16-Kbit (2 K × 8) AutoStore™ nvSRAM #### **Features** - 25 ns and 45 ns access times - Hands off automatic STORE on power-down with external 68 µF capacitor - STORE to QuantumTrap™ nonvolatile elements is initiated by software, hardware, or AutoStore™ on power-down - RECALL to SRAM initiated by software or power-up - Unlimited read, write, and RECALL cycles - 1,000,000 STORE cycles to QuantumTrap - 100 year data retention to QuantumTrap - Single 5 V ±10% operation - Commercial and industrial temperatures - 28-pin 300 mil and (330 mil) Small outline integrated circuit (SOIC) package - Restriction of hazardous substances (RoHS) compliant ## **Functional Description** The Cypress STK22C48 is a fast static RAM with a nonvolatile element in each memory cell. The embedded nonvolatile elements incorporate QuantumTrap technology producing the world's most reliable nonvolatile memory. The SRAM provides unlimited read and write cycles, while independent nonvolatile data resides in the highly reliable QuantumTrap cell. Data transfers from the SRAM to the nonvolatile elements (the STORE operation) takes place automatically at power-down. On power-up, data is restored to the SRAM (the RECALL operation) from the nonvolatile memory. A hardware STORE is initiated with the HSB pin. ## **Logic Block Diagram** ## **Contents** | Pin Configurations 3 | AC Test Conditions | |--|-----------------------| | Device Operation4 | AC Switching Chara | | SRAM Read 4 | SRAM Read Cyc | | SRAM Write 4 | Switching Waveform | | AutoStore Operation 4 | SRAM Write Cyc | | AutoStore Inhibit mode4 | AutoStore or Power | | Hardware STORE (HSB) Operation5 | Switching Waveform | | Hardware RECALL (Power Up)5 | Hardware STORE Cy | | Data Protection5 | Switching Waveform | | Noise Considerations 5 | Ordering Information | | Hardware Protect 5 | Ordering Code D | | Low Average Active Power 5 | Package Diagrams | | Preventing Store 6 | Document Convention | | Rost Practices 6 | Acronyms | | Maximum Ratings7 | Units of Measure | | Operating Range7 | Document History P | | DC Electrical Characteristics7 | Sales, Solutions, and | | Data Retention and Endurance7 | Worldwide Sales | | Capacitance 8 | Products | | Thermal Resistance8 | PSoC Solutions | | | esigns. oductio | | Ton the state of t | Ugjilo k | | anded for one |) | | Maximum Ratings | | | , lu _k | | | AC Test Conditions | 8 | |---|----| | AC Switching Characteristics | 9 | | SRAM Read Cycle | | | Switching Waveforms | 9 | | SRAM Write Cycle | | | AutoStore or Power Up RECALL | 11 | | Switching Waveform | 11 | | Hardware STORE Cycle | 12 | | Switching Waveform | | | Ordering Information | | | Ordering Code Definitions | 13 | | Package Diagrams | 14 | | Document Conventions | 15 | | AcronymsUnits of Measure | 15 | | Units of Measure | 15 | | Document History Page | 16 | | Sales, Solutions, and Legal Information | 17 | | Worldwide Sales and Design Support | 17 | | Products | 17 | | PSoC Solutions | 17 | ## **Pin Configurations** Figure 1. Pin Diagram - 28-pin SOIC **Table 1. Pin Definitions** | Pin Name | Alt | IO Type | Description | |----------------------------------|-----|-----------------|--| | A ₀ -A ₁₀ | | Input | Address inputs. Used to select one of the 2,048 bytes of the nvSRAM. | | DQ ₀ –DQ ₇ | | Input or output | Bidirectional data IO lines. Used as input or output lines depending on operation. | | WE | W | Input | Write enable input, active LOW . When the chip is enabled and WE is LOW, data on the IO pins is written to the specific address location. | | CE | E | Input | Chip enable input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip. | | ŌĒ | G | Input | Output enable, active LOW. The active LOW OE input enables the data output buffers during read cycles. Deasserting OE HIGH causes the IO pins to tri-state. | | V_{SS} | | Ground | Ground for the device. The device is connected to ground of the system. | | V _{CC} | | Power supply | Power supply inputs to the device. | | HSB | | Input or output | Hardware Store Busy (HSB). When LOW, this output indicates a Hardware Store is in progress. When pulled low external to the chip, it initiates a nonvolatile STORE operation. A weak internal pull-up resistor keeps this pin high if not connected (connection optional). | | V _{CAP} | | Power supply | AutoStore capacitor . Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile elements. | | NC | · | No connect | No connect. This pin is not connected to the die. | ## **Device Operation** The STK22C48 nvSRAM is made up of two functional components paired in the same physical cell. These are an SRAM memory cell and a nonvolatile QuantumTrap cell. The SRAM memory cell operates as a standard fast static RAM. Data in the SRAM is transferred to the nonvolatile cell (the STORE operation) or from the nonvolatile cell to SRAM (the RECALL operation). This unique architecture enables the storage and recall of all cells in parallel. During the STORE and RECALL operations, SRAM Read and Write operations are inhibited. The STK22C48 supports unlimited reads and writes similar to a typical SRAM. In addition, it provides unlimited RECALL operations from the nonvolatile cells and up to one million STORE operations. ### **SRAM Read** The STK22C48 performs a Read cycle whenever $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are LOW while $\overline{\text{WE}}$ and $\overline{\text{HSB}}$ are HIGH. The address specified on pins A_{0-10} determines the 2,048 data bytes accessed. When the Read is initiated by an address transition, the outputs are valid after a delay of t_{AA} (Read cycle 1). If the Read is initiated by $\overline{\text{CE}}$ or $\overline{\text{OE}}$, the outputs are valid at t_{ACE} or at t_{DOE} , whichever is later (Read cycle 2). The data outputs repeatedly respond to address changes within the t_{AA} access time without the need for transitions on any control input $\underline{\text{pins}}$, $\underline{\text{and}}$ remains valid until $\underline{\text{ano}}$ ther address change or until $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is brought HIGH, or $\overline{\text{WE}}$ or HSB is brought LOW. #### SRAM Write A Write cycle is performed whenever $\overline{\text{CE}}$ and $\overline{\text{WE}}$ are LOW and HSB is HIGH. The address inputs must be stable prior to entering the Write cycle and must remain stable until either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ goes HIGH at the end of the cycle. The data on the common I/O pins DQ₀₋₇ are written into the memory if it has valid t_{SD} , before the end of a $\overline{\text{WE}}$ controlled Write or before the end of an $\overline{\text{CE}}$ controlled Write. Keep $\overline{\text{OE}}$ HIGH during the entire Write cycle to avoid data bus contention on common I/O lines. If $\overline{\text{OE}}$ is left LOW, internal circuitry turns off the output buffers t_{HZWE} after $\overline{\text{WE}}$ goes LOW. ## **AutoStore Operation** During normal operation, the device draws current from V_{CC} to charge a capacitor connected to the V_{CAP} pin. This stored charge is used by the chip to perform a single STORE operation. If the voltage on the V_{CC} pin drops below V_{SWITCH} , the part automatically disconnects the V_{CAP} pin from V_{CC} . A STORE operation is initiated with power provided by the V_{CAP} capacitor. Figure 2 shows the proper connection of the storage capacitor (V_{CAP}) for automatic store operation. A charge storage capacitor between 68 μF and 220 μF ($\pm 20\%$) rated at 6 V should be Figure 2. AutoStore Mode In system power mode, both V $_{CC}$ and V $_{CAP}$ are connected to the +5 V power supply without the 68 μ F capacitor. In this mode, the AutoStore function of the STK22C48 operates on the stored system charge as power goes down. The user must, however, guarantee that V $_{CC}$ does not drop below 3.6 V during the 10 ms STORE cycle. To prevent unneeded STORE operations, automatic STOREs and those initiated by externally driving HSB LOW are ignored, unless at least one WRITE operation takes place since the most recent STORE or RECALL cycle. An optional pull-up resistor is shown connected to HSB. This is used to signal the system that the AutoStore cycle is in progress. #### AutoStore Inhibit mode If an automatic STORE on power loss is not required, then V_{CC} is tied to ground and +5 V is applied to V_{CAP} (Figure 3 on page 5). This is the AutoStore Inhibit mode, where the AutoStore function is disabled. If the STK22C48 is operated in this configuration, references to V_{CC} are changed to V_{CAP} throughout this data sheet. In this mode, STORE operations are triggered with the HSB pin. It is not permissible to change between these three options "on the fly". Figure 3. AutoStore Inhibit Mode ## Hardware STORE (HSB) Operation The STK22C48 provides the $\overline{\text{HSB}}$ pin for controlling and acknowledging the STORE operations. The $\overline{\text{HSB}}$ pin is used to request a hardware STORE cycle. When the HSB pin is driven LOW, the STK22C48 conditionally initiates a STORE operation after t_{DELAY}. An actual STORE cycle only begins if a Write to the SRAM takes place since the last STORE or RECALL cycle. The HSB pin also acts as an open drain driver that is internally driven LOW to indicate a busy condition, while the STORE (initiated by any means) is in progress. Pull-up this pin with an external 10 K ohm resistor to V_{CAP} if HSB is used as a driver. SRAM Read and Write operations, that are in progress when HSB is driven LOW by any means, are given time to complete before the STORE operation is initiated. After HSB goes LOW, the STK22C48 continues SRAM operations for t_{DELAY}. During t_{DELAY}, multiple SRAM Read operations take place. If a Write is in progress when HSB is pulled LOW, it allows a time, t_{DELAY} to complete. However, any SRAM Write cycles requested after HSB goes LOW are inhibited until HSB returns HIGH. During any STORE operation, regardless of how it is initiated, the STK22C48 continues to drive the HSB pin LOW, releasing it only when the STORE is complete. After completing the STORE operation, the STK22C48 remains disabled until the HSB pin returns HIGH. If HSB is not used, it is left unconnected. ## Hardware RECALL (Power Up) During power-up or after any low power condition ($V_{CC} < V_{RESET}$), an internal RECALL request is latched. When V_{CC} once again exceeds the sense voltage of V_{SWITCH} , a RECALL cycle is automatically initiated and takes $t_{HRECALL}$ to complete. #### **Data Protection** The STK22C48 protects data from corruption during low voltage conditions by inhibiting all externally initiated STORE and Write operations. The low voltage condition is detected when V_{CC} is less than V_{SWITCH} . If the STK22C48 is in a Write mode (both CE and WE are low) at power-up after a RECALL or after a STORE, the Write is inhibited until a negative transition on CE or WE is detected. This protects against inadvertent writes during power-up or brown out conditions. #### **Noise Considerations** The STK22C48 is a high speed memory. It must have a high frequency bypass capacitor of approximately 0.1 μ F connected between V_{CC} and V_{SS}, using leads and traces that are as short as possible. As with all high speed CMOS ICs, careful routing of power, ground, and signals reduce circuit noise. ## Hardware Protect The STK22C48 offers hardware protection against inadvertent STORE operation and SRAM Writes during low voltage conditions. When $V_{CAP} < V_{SWITCH}$, all externally initiated STORE operations and SRAM Writes are inhibited. AutoStore can be completely disabled by tying V_{CC} to ground and applying +5 V to V_{CAP} . This is the AutoStore Inhibit mode; in this mode, STOREs are only initiated by explicit request using either the software sequence or the \overline{HSB} pin. ## Low Average Active Power CMOS technology provides the STK22C48 the benefit of drawing significantly less current when it is cycled at times longer than 50 ns. Figure 4 on page 6 shows the relationship between I_{CC} and Read or Write cycle time. Worst case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, VCC = 5.5 V, 100% duty cycle on chip enable). Only standby current is drawn when the chip is disabled. The overall average current drawn by the STK22C48 depends on the following items: - The duty cycle of chip enable - The overall cycle rate for accesses - The ratio of Reads to Writes - CMOS versus TTL input levels - The operating temperature - The V_{CC} level - I/O loading Document Number: 001-51000 Rev. *D Page 5 of 17 Figure 4. Current Versus Cycle Time (Read) device drives HSB LOW for 20 ns at the onset of a STORE. When the STK22C48 is connected for AutoStore operation (system V_{CC} connected to V_{CC} and a 68 μF capacitor on $V_{CAP})$ and V_{CC} crosses V_{SWITCH} on the way down, the STK22C48 attempts to pull HSB LOW. If HSB does not actually get below V_{IL}, the part stops trying to pull HSB LOW and abort the STORE attempt. #### **Best Practices** nvSRAM products have been used effectively for over 15 years. While ease of use is one of the product's main system values, experience gained working with hundreds of applications has resulted in the following suggestions as best practices: - The nonvolatile cells in an nvSRAM are programmed on the test floor during final test and quality assurance. Incoming inspection routines at customer or contract manufacturer's sites sometimes reprogram these values. Final NV patterns are | 100 Average Active Current (mA) 40 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TTL CMOS TO 100 150 200 Cycle Time (ns) | | e
ii
c
c
c | ypically repeating patter and product's firmware stand product's firmware stand a set programmed is content values to determine the set of | hould not assume the state. Routines that inne first time system and so on must a stample, complex 4-dom bytes) as part the surrent these system again rewrite the lard against events in bugs, incoming in this data sheet indice. The best practived the maximum Vo | hat an NV array is check memorem configuration always program abyte pattern of 40 of the final system routines work write the nvSRAM hipped in a presenvSRAM into the spection routines cludes a minimum ce is to meet this cap value because | |---|--|---|----------------------------------|---|---|---| | he STORE
river capal
ecause it r | ng Store E function is disabled by the of sourcing 30 mA must overpower the inte | at a V _{OH} of at learnal pull-down de | ast 2.2 V, C | nternal pass transistor. (
/ _{CAP} value to make surdiscuss their V _{CAP} size s | e there is extra sto | nt to use a large
ore charge should | | he STORE
river capal
ecause it r | E function is disabled bole of sourcing 30 mA must overpower the inte | at a V _{OH} of at learnal pull-down de | ast 2.2 V, C | nternal pass transistor. (
/ _{CAP} value to make sure | e there is extra sto | nt to use a large
ore charge should | | he STORE
river capal
ecause it r
able 2. Ha | E function is disabled by the ple of sourcing 30 mA must overpower the interpretation for the ple of o | at a V _{OH} of at learnal pull-down de | ast 2.2 V, c | nternal pass transistor. (/ _{CAP} value to make surdiscuss their V _{CAP} size s | e there is extra sto
election with Cypre | nt to use a large
ore charge should
ss. | | he STORE
river capal
ecause it r
able 2. Ha | E function is disabled bole of sourcing 30 mA must overpower the integrated with the integration with the integral in | at a V _{OH} of at learnal pull-down de | ast 2.2 V, vice. This | nternal pass transistor. (/ _{CAP} value to make surdiscuss their V _{CAP} size s Mode | e there is extra sto
election with Cypre | nt to use a large
ore charge should
sss. Power | | he STORE
river capal
ecause it r
able 2. Ha | E function is disabled by the pole of sourcing 30 mA must overpower the integrated ware Mode Selection WE | at a V _{OH} of at learnal pull-down de | ast 2.2 V, vice. This A10–A0 X | nternal pass transistor. (/ _{CAP} value to make surdiscuss their V _{CAP} size s Mode Not selected | e there is extra sto
election with Cypre | nt to use a large ore charge should ss. Power Standby | #### Notes <u>I/O s</u>tate assumes $\overline{OE} \le V_{IL}$. Activation of nonvolatile cycles does not depend on state of \overline{OE} . HSB STORE operation occurs only if an SRAM Write is done since the last nonvolatile cycle. After the STORE (If any) completes, the part goes into standby mode, inhibiting all operations until HSB rises. Document Number: 001-51000 Rev. *D Page 6 of 17 ## **Maximum Ratings** Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested. Storage temperature-65 °C to +150 °C Temperature under bias...... -55 °C to +125 °C Supply voltage on V_{CC} relative to V_{SS}-0.5 V to 7.0 V Voltage on input relative to V_{SS}-0.6 V to V_{CC} + 0.5 V | Voltage on DQ ₀₋₇ or HSB | 0.5 V to Vcc + 0.5 V | |---------------------------------------|------------------------| | Power dissipation | 1.0 W | | DC output current (1 output at a time | e, 1 s duration) 15 mA | ## **Operating Range** | Range | Ambient Temperature | V _{CC} | |------------|---------------------|-----------------| | Commercial | 0 °C to +70 °C | 4.5 V to 5.5 V | | Industrial | –40 °C to +85 °C | 4.5 V to 5.5 V | ### **DC Electrical Characteristics** Over the operating range $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V})^{[3]}$ | Parameter | Description | Test Conditions | | Min | Max | Unit | |---------------------------------|---|--|-------------------------|----------------|----------------|----------| | I _{CC1} | Average V _{CC} current | t_{RC} = 25 ns
t_{RC} = 45 ns | Commercial | ı | 85
65 | mA
mA | | | | Dependent on output loading and cycle rate. Values obtained without output loads. I _{OUT} = 0 mA. | Industrial | 1 | 90
65 | mA
mA | | I _{CC2} | Average V _{CC} current during STORE | All inputs Do Not Care, V _{CC} = Max
Average current for duration t _{STORE} | | 1 | 3 | mA | | I _{CC3} | Average V_{CC} current at t_{RC} = 200 ns, 5 V, 25 °C typical | WE ≥ (V _{CC} – 0.2 V). All other inputs cycling. Dependent on output loading and cycle rate. Valwithout output loads. | ues obtained | 1 | 10 | mA | | I _{CC4} | Average V _{CAP} current during AutoStore cycle | All inputs Do Not Care, $V_{CC} = Max$
Average current for duration t_{STORE} | | ı | 2 | mA | | I _{SB1} ^[4] | Average Vcc current (Standby, cycling TTL input | t_{RC} = 25 ns, $\overline{CE} \ge V_{IH}$
t_{RC} = 45 ns, $\overline{CE} \ge V_{IH}$ | Commercial | _ | 25
18 | mA
mA | | | levels) | , for tons | Industrial | - | 26
19 | mA
mA | | I _{SB2} ^[4] | V _{CC} standby current | $\overline{\text{CE}} \ge (V_{\text{CC}} - 0.2 \text{ V})$. All others $V_{\text{IN}} \le 0.2 \text{ V}$ or $\ge (V_{\text{CC}} + 0.2 \text{ V})$. All others $V_{\text{IN}} \le 0.2 \text{ V}$ or $\ge (V_{\text{CC}} + 0.2 \text{ V})$. Standby current level after nonvolatile cycle is a linear static. $V_{\text{CC}} = 0.2 \text{ V}$. | | 1 | 1.5 | mA | | I _{ILK} | Input leakage current | $V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$ | | -1 | +1 | μΑ | | I _{OLK} | Off state output leakage current | $V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}, \overline{CE} \text{ or } \overline{OE} \ge V_{IH} C$ | or WE ≤ V _{IL} | – 5 | +5 | μА | | V_{IH} | Input HIGH voltage | | | 2.2 | $V_{CC} + 0.5$ | V | | V_{IL} | Input LOW voltage | | | $V_{SS} - 0.5$ | 0.8 | V | | V_{OH} | Output HIGH voltage | I _{OUT} = –4 mA except HSB | | 2.4 | - | V | | V_{OL} | Output LOW voltage | I _{OUT} = 8 mA except HSB | | ı | 0.4 | V | | V_{BL} | Logic '0' voltage on HSB output | I _{OUT} = 3 mA | | _ | 0.4 | V | | V_{CAP} | Storage capacitor | Between V_{CAP} pin and Vss, 6 V rated. 68 μF – nom. | 10%, +20% | 61 | 220 | μF | #### **Data Retention and Endurance** | Parameter | Description | Min | Unit | |-------------------|------------------------------|-------|-------| | DATA _R | Data retention | 100 | Years | | NV_C | Nonvolatile STORE operations | 1,000 | K | V_{CC} reference levels throughout this data sheet refer to V_{CC} if that is where the power supply connection is made, or V_{CAP} if V_{CC} is connected to ground. CE ≥ V_{IH} does not produce standby current levels until any nonvolatile cycle in progress has timed out. Document Number: 001-51000 Rev. *D Page 7 of 17 ## Capacitance In the following table, the capacitance parameters are listed. [5] | Parameter | Description | Test Conditions | Max | Unit | |------------------|--------------------|--|-----|------| | C _{IN} | Input capacitance | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz},$ | 8 | pF | | C _{OUT} | Output capacitance | $V_{CC} = 0 \text{ to } 3.0 \text{ V}$ | 7 | pF | ## **Thermal Resistance** In the following table, the thermal resistance parameters are listed. [5] | Parameter | Description | Test Conditions | 28-SOIC
(300 mil) | 28-SOIC
(330 mil) | Unit | |---------------|--|---|----------------------|----------------------|------| | Θ_{JA} | Thermal resistance (junction to ambient) | Test conditions follow standard test methods and procedures for measuring thermal | TBD | TBD | °C/W | | Θ_{JC} | Thermal resistance (junction to case) | impedance, per EIA / JESD51. | TBD | TBD | °C/W | Figure 6. AC Test Loads ## **AC Test Conditions** #### Note ^{5.} These parameters are guaranteed by design and are not tested. ## **AC Switching Characteristics** ## **SRAM Read Cycle** | Pa | rameter | | 25 | ns | 45 ns | | | |--------------------------------|---------------------------------------|-----------------------------------|-----|-----|-------|-----|------| | Cypress
Parameter | Alt | Description | Min | Max | Min | Max | Unit | | t _{ACE} | t _{ELQV} | Chip enable access time | _ | 25 | _ | 45 | ns | | t _{RC} ^[6] | t _{AVAV} , t _{ELEH} | Read cycle time | 25 | - | 45 | _ | ns | | t _{AA} ^[7] | t _{AVQV} | Address access time | _ | 25 | _ | 45 | ns | | t _{DOE} | t _{GLQV} | Output enable to data valid | _ | 10 | - | 20 | ns | | t _{OHA} [7] | t _{AXQX} | Output hold after address change | 5 | - | 5 | _ | ns | | t _{LZCE} [8] | t _{ELQX} | Chip enable to output active | 5 | - | 5 | _ | ns | | t _{HZCE} [8] | t _{EHQZ} | Chip disable to output inactive | _ | 10 | - | 15 | ns | | t _{LZOE} [8] | t _{GLQX} | Output enable to output active | 0 | | 0 | _ | ns | | t _{HZOE} [8] | t _{GHQZ} | Output disable to output inactive | _ | 10 | - | 15 | ns | | t _{PU} ^[9] | t _{ELICCH} | Chip enable to power active | 0 | 0, | 0 | _ | ns | | t _{PD} ^[9] | t _{EHICCL} | Chip disable to power standby | - ~ | 25 | - | 45 | ns | ## **Switching Waveforms** Figure 7. SRAM Read Cycle 1: Address Controlled [6, 7] Figure 8. SRAM Read Cycle 2: CE and OE Controlled [6] #### Notes_ - WE and HSB must be High during SRAM Read cycles. Device is continuously selected with CE and OE both Low. - 8. Measured ±200 mV from steady state output voltage. - 9. These parameters are guaranteed by design and are not tested. ## **SRAM Write Cycle** | Parameter | | | 25 | ns | 45 ns | | | |----------------------------|---------------------------------------|----------------------------------|-----|-----|-------|-----|------| | Cypress
Parameter | Alt | Description | Min | Max | Min | Max | Unit | | t _{WC} | t _{AVAV} | Write cycle time | 25 | - | 45 | - | ns | | t _{PWE} | t _{WLWH} , t _{WLEH} | Write pulse width | 20 | _ | 30 | _ | ns | | t _{SCE} | t _{ELWH} , t _{ELEH} | Chip enable to end of write | 20 | - | 30 | _ | ns | | t _{SD} | t _{DVWH} , t _{DVEH} | Data setup to end of write | 10 | - | 15 | _ | ns | | t _{HD} | t _{WHDX} , t _{EHDX} | Data hold after end of write | 0 | - | 0 | _ | ns | | t _{AW} | t _{AVWH} , t _{AVEH} | Address setup to end of write | 20 | _ | 30 | _ | ns | | t _{SA} | t _{AVWL} , t _{AVEL} | Address setup to start of write | 0 | - | 0 | _ | ns | | t _{HA} | t _{WHAX} , t _{EHAX} | Address hold after end of write | 0 | - | 0 | _ | ns | | t _{HZWE} [10, 11] | t _{WLQZ} | Write enable to output disable | _ | 10 | _ | 14 | ns | | t _{LZWE} [10] | t _{WHQX} | Output active after end of write | 5 | | 5 | _ | ns | ## **Switching Waveforms** Figure 9. SRAM Write Cycle 1: WE Controlled [12, 13] Figure 10. SRAM Write Cycle 2: CE Controlled [12, 13] - 10. Measured ±200 mV from steady state output voltage. 11. If WE is Low when CE goes Low, the outputs remain in the high impedance state. 12. HSB must be high during SRAM Write cycles. 13. CE or WE must be greater than V_{IH} during address transitions. ## **AutoStore or Power Up RECALL** | Parameter | Alt | Description | STK22C48 | | Unit | |-----------------------------------|---------------------------------------|---|----------|-----|-------| | Farailletei | | Description | Min | Max | Oiiit | | t _{HRECALL} [14] | t _{RESTORE} | Power Up RECALL duration | - | 550 | μS | | t _{STORE} [15, 16] | t _{HLHZ} | STORE cycle duration | - | 10 | ms | | t _{DELAY} [17] | t _{HLQZ} , t _{BLQZ} | Time allowed to complete SRAM cycle | 1 | - | μ\$ | | V _{SWITCH} | | Low voltage trigger level | 4.0 | 4.5 | V | | V_{RESET} | | Low voltage reset level | - | 3.6 | V | | t _{VSBL} ^[18] | | Low voltage trigger (V _{SWITCH}) to HSB Low | _ | 300 | ns | ## **Switching Waveform** Figure 11. AutoStore/Power Up RECALL - 14. $\underline{t_{HRECALL}}$ starts from the time V_{CC} rises above V_{SWITCH} . 15. \overline{CE} and \overline{OE} low and WE high for output behavior. - 16. $\overline{\text{HSB}}$ is asserted low for 1us when V_{CAP} drops through V_{SWITCH} . If an SRAM Write has not taken place since the last nonvolatile cycle, $\overline{\text{HSB}}$ is released and no store - 17. CE and OE low for output behavior. - 18. HSB must be high during SRAM Write cycles. Document Number: 001-51000 Rev. *D ## **Hardware STORE Cycle** | Parameter | Alt | Description | STK22C48 | | Unit | |----------------------------|--|------------------------------------|----------|-----|-------| | Parameter | | Description | Min | Max | Oilit | | t _{DHSB} [19, 20] | t _{RECOVER} , t _{HHQX} | Hardware STORE HIGH to inhibit off | _ | 700 | ns | | t _{PHSB} | t _{HLHX} | Hardware STORE pulse width | 15 | _ | ns | | t_{HLBL} | | Hardware STORE LOW to STORE busy | _ | 300 | ns | ## **Switching Waveform** Figure 12. Hardware STORE Cycle #### Notes ^{19.} CE and OE low and WE high for output behavior. 20. t_{DHSB} is only applicable after t_{STORE} is complete. ## **Ordering Code Definitions** ## STK22C48 - N F 45 I TR ## **Ordering Information** These parts are not recommended for new designs. They are in production to support ongoing production programs only. | Speed (ns) | Ordering Code | Package Diagram | Package Type | Operating Range | |------------|------------------|-----------------|-----------------------|-----------------| | 25 | STK22C48-NF25ITR | 51-85026 | 28-pin SOIC (300 mil) | Industrial | | | STK22C48-NF25I | 51-85026 | 28-pin SOIC (300 mil) | | | | STK22C48-SF25ITR | 51-85058 | 28-pin SOIC (330 mil) | | | | STK22C48-SF25I | \$1-85058 | 28-pin SOIC (330 mil) | | | 45 | STK22C48-NF45TR | 51-85026 | 28-pin SOIC (300 mil) | Commercial | | | STK22C48-NF45 | 51-85026 | 28-pin SOIC (300 mil) | | All parts are Pb-free. The above table contains Final information. Please contact your local Cypress sales representative for availability of these parts ## **Package Diagrams** Figure 13. 28-Pin (300 mil) SOIC (51-85026) Document Number: 001-51000 Rev. *D ## **Document Conventions** ## **Acronyms** | Acronym | Description | | |---------|---|--| | CMOS | Complementary metal oxide semiconductor | | | EIA | Electronic Industries Alliance | | | I/O | Input/output | | | nvSRAM | nonvolatile static random access memory | | | RoHS | Restriction of hazardous substances | | | SOIC | Small outline integrated circuit | | ## **Units of Measure** | s of Measu | ire | Designs, odnogl | |------------|-----------------|-----------------| | Symbol | Unit of Measure | | | °C | degree Celsius | | | Hz | Hertz | | | kbit | 1024 bits | | | ΚΩ | kilo ohms | | | μΑ | micro Amperes | (| | mA | milli Amperes | scii | | μF | micro Farads | idili odi | | MHz | mega Hertz | 62, 61 | | μS | micro seconds | Onio In | | ms | milli seconds | 70. | | ns | nano seconds | XO | | pF | pico Farads | 2/2 | | V | Volts | | | Ω | ohms | | | W | Watts | | Document Number: 001-51000 Rev. *D ## **Document History Page** | Rev. | ECN No. | Orig. of
Change | Submission
Date | Description of Change | |------|---------|--------------------|--------------------|---| | ** | 2625139 | GVCH/PYRS | 01/30/2009 | New data sheet | | *A | 2826441 | GVCH | 12/11/2009 | Added following text in the Ordering Information section: "These parts a not recommended for new designs. In production to support ongoing production programs only." Added watermark in PDF stating "Not recommended for new designs. I production to support ongoing production programs only." Added Contents on page 2. | | *B | 3037216 | GVCH | 09/23/2010 | Added Pin Configurations and Pin Definitions table. Updated Package Diagrams. Added Acronyms and units Units of Measure table. Minor edits. | | *C | 3054310 | GVCH/KEER | 10/11/2010 | Removed inactive parts - STK22C48-NF25, STK22C48-NF25TR, STK22C48-SF25, STK22C48-SF25TR, STK22C48-SF45, STK22C48-SF45TR, STK22C48-NF45I, STK22C48-NF45ITR from Ordering information table. Updated Package diagrams. | | *D | 3189527 | GVCH | 03/07/2011 | Added watermark in PDF stating "Not recommended for new designs. I production to support ongoing production programs only." | | | | Not Reco | intended to | Added watermark in PDF stating "Not recommended for new designs. In production to support ongoing production programs only." | ## Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** Automotive Clocks & Buffers Interface **Lighting & Power Control** Memory Optical & Image Sensing **PSoC** Touch Sensing **USB Controllers** Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc #### **PSoC Solutions** psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5 With Production to support ondoing production production to support ondoing on the support of suppor © Cypress Semiconductor Corporation, 2006-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for médical, lifé support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-51000 Rev. *D Revised March 7, 2011 Page 17 of 17