PHOTONIC Silicon Photodiode, Blue Enhanced Photoconductive DETECTORS INC. Type PDB-C119 #### **FEATURES** - Wide view angle - High speed - Large active area - Low dark current #### **DESCRIPTION** The **PDB-C119** is a silicon, PIN planar diffused, blue enhanced photodiode. Ideal for high speed photoconductive applications. Packaged in a hermetic TO-5 metal can with a glass window cap. #### **APPLICATIONS** - Bar code detector - Encoder sensor - Laser detection - Instrumentation ### ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted) | SYMBOL | PARAMETER | MIN | MAX | UNITS | |------------------|-----------------------------|-----|------|-------| | V _{BR} | Reverse Voltage | | 100 | V | | T _{STG} | Storage Temperature | -55 | +150 | ∘C | | То | Operating Temperature Range | -40 | +125 | ∘C | | Ts | Soldering Temperature* | | +240 | ∘C | | IL | Light Current | | 0.5 | mA | ^{*1/16} inch from case for 3 secs max ## **SPECTRAL RESPONSE** ## ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted) | (// 20 0 // 10 // 20 0 // 10 // 20 0 // 10 | | | | | | | | | |--|----------------------------|--------------------------------|-----|---------------------|------|---------|--|--| | SYMBOL | CHARACTERISTIC | TESTCONDITIONS | MIN | TYP | MAX | UNITS | | | | Isc | Short Circuit Current | H = 100 fc, 2850 K | 90 | 110 | | μ A | | | | ΙD | Dark Current | H = 0, V _R = 10 V | | 5 | 20 | nA | | | | Rsн | Shunt Resistance | $H = 0, V_R = 10 \text{ mV}$ | 150 | 300 | | MΩ | | | | TC RsH | RSH Temp. Coefficient | $H = 0, V_R = 10 \text{ mV}$ | | -8 | | %/℃ | | | | Cı | Junction Capacitance | H = 0, V _R = 10 V** | | 60 | 150 | pF | | | | λrange | Spectral Application Range | Spot Scan | 350 | | 1100 | nm | | | | λр | Spectral Response - Peak | Spot Scan | | 950 | | nm | | | | VBR | Breakdown Voltage | I = 10 μA | 75 | 100 | | V | | | | NEP | Noise Equivalent Power | V _R = 10 V @ Peak | | 5x10 ⁻¹⁴ | | W/ √ Hz | | | | tr | Response Time | $RL = 1 K\Omega V_a = 10 V$ | | 50 | | nS | | | Information in this technical data sheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice.**f=1 MHz