SN74HCS373 # SCLS878A - OCTOBER 2021 - REVISED DECEMBER 2022 # SN74HCS373 Octal Transparent D-Type Latches with Schmitt-Trigger Inputs and 3-**State Outputs** ### 1 Features - Wide operating voltage range: 2 V to 6 V - Schmitt-trigger inputs allow for slow or noisy input signals - Low power consumption - Typical I_{CC} of 100 nA - Typical input leakage current of ±100 nA - ±7.8-mA output drive at 6 V - Extended ambient temperature range: -40°C to +125°C, TA ### 2 Applications - Parallel data storage - Digital bus buffer ## 3 Description The SN74HCS373 contains eight D-type latches. All inputs include Schmitt-trigger architecture. All channels share a latch enable (LE) input and output enable (OE) input. ### **Device Information** | PART NUMBER | PACKAGE ⁽¹⁾ | BODY SIZE (NOM) | |--------------|------------------------|-------------------| | SN74HCS373 | RKS (VQFN, 20) | 4.50 mm × 2.50 mm | | 311/411033/3 | DGS (VSSOP, 20) | 5.10 mm × 3.00 mm | For all available packages, see the orderable addendum at the end of the data sheet. Benefits of Schmitt-trigger inputs ### **Table of Contents** | 1 Features1 | 8.2 Functional Block Diagram9 | |---------------------------------------|---| | 2 Applications1 | 8.3 Feature Description9 | | 3 Description1 | 8.4 Device Functional Modes10 | | 4 Revision History2 | 9 Application and Implementation11 | | 5 Pin Configuration and Functions3 | 9.1 Application Information11 | | Pin Functions3 | 9.2 Typical Application11 | | 6 Specifications4 | 10 Power Supply Recommendations14 | | 6.1 Absolute Maximum Ratings4 | 11 Layout14 | | 6.2 ESD Ratings 4 | 11.1 Layout Guidelines14 | | 6.3 Recommended Operating Conditions4 | 11.2 Layout Example14 | | 6.4 Thermal Information4 | 12 Device and Documentation Support15 | | 6.5 Electrical Characteristics5 | 12.1 Documentation Support15 | | 6.6 Timing Characteristics5 | 12.2 Receiving Notification of Documentation Updates 15 | | 6.7 Switching Characteristics6 | 12.3 Support Resources15 | | 6.8 Operating Characteristics 6 | 12.4 Trademarks15 | | 6.9 Typical Characteristics7 | 12.5 Electrostatic Discharge Caution15 | | 7 Parameter Measurement Information8 | 12.6 Glossary15 | | 8 Detailed Description9 | 13 Mechanical, Packaging, and Orderable | | 8.1 Overview9 | Information16 | ## **4 Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | C | changes from Revision * (October 2021) to Revision A (December 2022) | Page | |---|--|------| | • | Changed from Application Information to Production Data | | | • | Added DGS device to Device Information Table | 1 | | • | Added DGS (VSSOP) Package Information | 3 | | • | Added DGS package Thermal Information | 4 | | | Updated the Detailed Design Procedure section | | | | · | | ## **5 Pin Configuration and Functions** Figure 5-1. DGS Package 20-Pin VSSOP Top View ### **Pin Functions** | P | 'IN | - I/O | DESCRIPTION | |------------------------------|-----|--------|---| | NAME NO. | | - 1/0 | DESCRIPTION | | ŌĒ | 1 | Input | Output enable, active low | | 1Q | 2 | Output | Output for channel 1 | | 1D | 3 | Input | Input for channel 1 | | 2D | 4 | Input | Input for channel 2 | | 2Q | 5 | Output | Output for channel 2 | | 3Q | 6 | Output | Output for channel 3 | | 3D | 7 | Input | Input for channel 3 | | 4D | 8 | Input | Input for channel 4 | | 4Q | 9 | Output | Output for channel 4 | | GND | 10 | _ | Ground | | LE | 11 | Input | Latch enable | | 5Q | 12 | Output | Output for channel 5 | | 5D | 13 | Input | Input for channel 5 | | 6D | 14 | Input | Input for channel 6 | | 6Q | 15 | Output | Output for channel 6 | | 7Q | 16 | Output | Output for channel 7 | | 7D | 17 | Input | Input for channel 7 | | 8D | 18 | Input | Input for channel 8 | | 8Q | 19 | Output | Output for channel 8 | | V _{CC} | 20 | _ | Postive supply | | Thermal Pad ⁽¹⁾ — | | _ | The thermal pad can be connect to GND or left floating. Do not connect to any other signal or supply. | (1) RKS package only. ## **6 Specifications** ### **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|---|---------------------------------|------|-----|------| | V _{CC} | Supply voltage | | -0.5 | 7 | V | | I _{IK} | Input clamp current ⁽²⁾ | $V_{l} < 0$ or $V_{l} > V_{CC}$ | | ±20 | mA | | I _{OK} | Output clamp current ⁽²⁾ | $V_O < 0$ or $V_O > V_{CC}$ | | ±20 | mA | | Io | Continuous output current | $V_{O} = 0$ to V_{CC} | | ±35 | mA | | I _{CC} | Continuous current through V _{CC} or GND | · | | ±70 | mA | | TJ | Junction temperature | | | 150 | °C | | T _{stg} | Storage temperature | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### 6.2 ESD Ratings | | | | | VALUE | UNIT | |-----|--|---|---|-------|------| | \ / | | | Human-body model (HBM), per ANSI/ESDA/
JEDEC JS-001 ⁽¹⁾ | ±4000 | \/ | | v | | Charged-device model (CDM), per ANSI/ESDA/
JEDEC JS-002 ⁽²⁾ | ±1500 | V | | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |-----------------|---------------------|-----|-----------------|------| | V _{CC} | Supply voltage | 2 | 6 | V | | VI | Input voltage | 0 | V _{CC} | V | | Vo | Output voltage | 0 | V _{CC} | V | | T _A | Ambient temperature | -40 | 125 | °C | ### **6.4 Thermal Information** | THERMAL METRIC(1) | | SN74I | | | |------------------------|----------------------------------------------|------------|-------------|------| | | | RKS (VQFN) | DGS (VSSOP) | UNIT | | | | 20 PINS | 20 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 83.2 | 130.6 | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 82.6 | 68.7 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 57.4 | 85.4 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 14.5 | 10.5 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 56.4 | 85.0 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 40.0 | N/A | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: SN74HCS373 ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ### **6.5 Electrical Characteristics** over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). | | PARAMETER | TEST CO | NDITIONS | V _{CC} | MIN | TYP | MAX | UNIT | | | | | | | | | | | |-----------------|-------------------------------------------------|----------------------------|--------------------------|-----------------|-----------------------|-------------------------|-------|------|--|--|--|--|---------------------------|-----|-----|------|--|--| | | | | | 2 V | 0.7 | | 1.5 | | | | | | | | | | | | | V _{T+} | Positive switching threshold | | | 4.5 V | 1.7 | | 3.15 | V | | | | | | | | | | | | | | | | 6 V | 2.1 | | 4.2 | | | | | | | | | | | | | | | | | 2 V | 0.3 | | 1 | | | | | | | | | | | | | V _{T-} | Negative switching threshold | | | 4.5 V | 0.9 | | 2.2 | V | | | | | | | | | | | | | | | | 6 V | 1.2 | | 3 | | | | | | | | | | | | | | | | | 2 V | 0.2 | | 1 | | | | | | | | | | | | | ΔV_T | Hysteresis (V _{T+} - V _{T-}) | | | 4.5 V | 0.4 | | 1.4 | V | | | | | | | | | | | | | | | | 6 V | 0.6 | | 1.6 | | | | | | | | | | | | | | | | I _{OH} = -20 μA | 2 V to 6 V | V _{CC} - 0.1 | V _{CC} - 0.002 | | | | | | | | | | | | | | V _{OH} | High-level output voltage | $V_I = V_{IH}$ or V_{IL} | I _{OH} = -6 mA | 4.5 V | 4 | 4.3 | | V | | | | | | | | | | | | | | | | | | | | | | | | | I _{OH} = -7.8 mA | 6 V | 5.4 | 5.75 | | | | | | | I _{OL} = 20 μA | 2 V to 6 V | | 0.002 | 0.1 | | | | | | | | | | | | | V _{OL} | Low-level output voltage | $V_I = V_{IH}$ or V_{IL} | I _{OL} = 6 mA | 4.5 V | | 0.18 | 0.3 | V | | | | | | | | | | | | | | | I _{OL} = 7.8 mA | 6 V | | 0.22 | 0.33 | | | | | | | | | | | | | I _I | Input leakage current | $V_I = V_{CC}$ or 0 | | 6 V | | ±100 | ±1000 | nA | | | | | | | | | | | | I _{CC} | Supply current | $V_I = V_{CC}$ or 0, I_C | _D = 0 | 6 V | | 0.1 | 2 | μΑ | | | | | | | | | | | | Ci | Input capacitance | | | 2 V to 6 V | | | 5 | pF | | | | | | | | | | | ### **6.6 Timing Characteristics** over operating free-air temperature range (unless otherwise noted), $C_L = 50 \text{ pF}$ | | PARAMETER | CONDITION | V _{cc} | MIN MAX | UNIT | |-----------------|------------------------------|-----------------|-----------------|---------|------| | | | | 2 V | 12 | | | t _w | Pulse duration | LE high | 4.5 V | 6 | ns | | | | | 6 V | 6 | | | | u Setup time Data befo | | 2 V | 18 | | | t _{su} | | Data before LE↓ | 4.5 V | 6 | ns | | | | | 6 V | 6 | | | | | | 2 V | 0 | | | t _h | h Hold time, Data before LE↓ | | 4.5 V | 0 | ns | | | | | 6 V | 0 | | Figure 6-1. Timing diagram ### **6.7 Switching Characteristics** over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). See *Parameter Measurement Information*. C_L = 50 pF. | | FROM (INPUT) | TO (OUTPUT) | V _{CC} | MIN | TYP | MAX | UNIT | |-----------------------------|-------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | 2 V | | 14.6 | 19.4 | | | Transition-time Any Q | Any Q | 4.5 V | | 7.7 | 9.6 | ns | | | | | | 6 V | | 7.4 | 10.4 | | | | | 2 V | | 24.5 | 33 | | | | | D | Q | 4.5 V | | 9.9 | 14 | | | Dranagation dalay | | | 6 V | | 9.6 | 11 | ns | | Propogation delay LE Any Q | | | 2 V | | 24.5 | 33 | | | | Any Q | 4.5 V | | 9.9 | 14 | | | | | | | 6 V | | 9.6 | 11 | | | | | | 2 V | | 15 | 44 | + | | Enable time | ŌĒ | Any Q | 4.5 V | | 7 | 22 | ns | | | | | 6 V | | 6 | 18 | | | | | Any Q | 2 V | | 12 | 30 | | | Disable time | ŌĒ | Any Q | 4.5 V | , | 9 | 20 | ns | | | | Any Q | 6 V | | 8 | 19 | | | | Propogation delay | D Propogation delay LE Enable time OE | D Q Propogation delay LE Any Q Enable time OE Any Q | Propogation delay D Q 4.5 ∨ 6 ∨ 2 ∨ 4.5 ∨ 6 ∨ 6 ∨ 6 ∨ 6 ∨ 6 ∨ 6 ∨ 6 ∨ 6 ∨ 6 ∨ | Fransition-time Any Q 4.5 ∨ 6 ∨ Propogation delay 2 ∨ 2 ∨ LE Any Q 4.5 ∨ 6 ∨ Enable time OE Any Q 2 ∨ Any Q 4.5 ∨ 6 ∨ Any Q 2 ∨ 4.5 ∨ Any Q 4.5 ∨ 6 ∨ Any Q 4.5 ∨ 4.5 ∨ OE Any Q 4.5 ∨ | Fransition-time Any Q 4.5 V 7.7 6 V 7.4 2 V 24.5 4.5 V 9.9 6 V 9.6 2 V 24.5 4.5 V 9.9 6 V 9.6 Enable time OE Any Q 2 V 15 Any Q 2 V 15 Any Q 2 V 12 Any Q 4.5 V 9 | Fransition-time Any Q 4.5 ∨ 7.7 9.6 6 ∨ 7.4 10.4 2 ∨ 24.5 33 4.5 ∨ 9.9 14 6 ∨ 9.6 11 2 ∨ 24.5 33 LE Any Q 4.5 ∨ 9.9 14 6 ∨ 9.6 11 6 ∨ 9.6 11 2 ∨ 15 44 6 ∨ 9.6 11 2 ∨ 15 44 4.5 ∨ 7 22 6 ∨ 6 ∨ 18 Any Q 2 ∨ 12 30 Any Q 4.5 ∨ 9 20 | ### **6.8 Operating Characteristics** over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|----------------------------------------|-----------------|-----|-----|-----|------| | C _{pd} | Power dissipation capacitance per gate | No load | | 20 | | pF | Product Folder Links: SN74HCS373 ### **6.9 Typical Characteristics** $T_A = 25^{\circ}C$ Figure 6-3. Output Driver Resistance in HIGH State Figure 6-4. Supply Current Across Input Voltage, 2-, 2.5-, and 3.3-V Supply Figure 6-5. Supply Current Across Input Voltage, 4.5-, 5-, and 6-V Supply ### 7 Parameter Measurement Information Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_t < 2.5 \text{ ns}$. For clock inputs, f_{max} is measured when the input duty cycle is 50%. The outputs are measured one at a time with one input transition per measurement. (1) C_L includes probe and test-fixture capacitance. Figure 7-1. Load Circuit for 3-State Outputs Figure 7-3. Voltage Waveforms, Setup and Hold Times Figure 7-5. Voltage Waveforms Propagation Delays Figure 7-2. Voltage Waveforms, Pulse Duration (1) The greater between t_{PLH} and t_{PHL} is the same as $t_{\text{pd}}.$ Figure 7-4. Voltage Waveforms Propagation Delays (1) The greater between t_{r} and t_{f} is the same as t_{t} . Figure 7-6. Voltage Waveforms, Input and Output Transition Times ### **8 Detailed Description** #### 8.1 Overview The SN74HCS373 contains eight D-type latches. All inputs include Schmitt-trigger architecture. All channels share a latch enable (LE) and output enable (OE) input. When the latch is enabled (LE is high), data is allowed to pass through from the D inputs to the Q outputs. When the latch is disabled (LE is low), the Q outputs hold the last state they had regardless of changes at the D inputs. If the latch enable (LE) input is held low during startup, the output state of all channels is unknown until the latch enable (LE) input is driven high with valid input signals at all data (D) inputs. When the outputs are enabled (OE is low), the outputs are actively driving low or high. When the outputs are disabled (\overline{OE} is high), the outputs are set into the high-impedance state. The active low output enable (\overline{OE}) does not have any impact on the stored state in the latches. ### 8.2 Functional Block Diagram ### 8.3 Feature Description ### 8.3.1 Balanced CMOS 3-State Outputs This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving high, driving low, and high impedance. The term "balanced" indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times. When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of minor leakage current as defined in the *Electrical Characteristics* table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption limitations. Typically, a $10 \text{ k}\Omega$ resistor can be used to meet these requirements. Unused 3-state CMOS outputs should be left disconnected. #### 8.3.2 CMOS Schmitt-Trigger Inputs This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics* table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics* table, using Ohm's law ($R = V \div I$). The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers. #### 8.3.3 Clamp Diode Structure The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical Placement of Clamping Diodes for Each Input and Output. #### CAUTION Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. Figure 8-1. Electrical Placement of Clamping Diodes for Each Input and Output ### 8.4 Device Functional Modes **Table 8-1. Function Table** | | OUTPUT ⁽²⁾ | | | | |----|-----------------------|---|--------------------|--| | ŌE | LE | D | Q | | | L | Н | L | L | | | L | Н | Н | Н | | | L | L | Х | Q ₀ (3) | | | Н | Х | Х | Z | | - (1) L = input low, H = input high, ↑ = input transitioning from low to high, ↓ = input transitioning from high to low, X = don't care - (2) L = output low, H = output high, Q₀ = previous state, Z = high impedance - (3) At startup, Q_0 is unknown ### 9 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 9.1 Application Information In this application, the SN74HCS373 is used to control an 8-bit data bus. Outputs can be held in the high-impedance state, held in the last known state, or change together with the data inputs, depending on the control inputs at LE and $\overline{\text{OE}}$ coming from the bus controller. ### 9.2 Typical Application Figure 9-1. Typical Application Block Diagram ### 9.2.1 Design Requirements #### 9.2.1.1 Power Considerations Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics* section. The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS373 plus the maximum static supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only source as much current that is provided by the positive supply source. Be sure to not exceed the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings*. The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HCS373 plus the maximum supply current, I_{CC}, listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Be sure to not exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*. The SN74HCS373 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50 pF. The SN74HCS373 can drive a load with total resistance described by $R_L \ge V_O$ / I_O , with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin. Total power consumption can be calculated using the information provided in *CMOS Power Consumption and Cpd Calculation*. Thermal increase can be calculated using the information provided in *Thermal Characteristics of Standard Linear* and Logic (SLL) Packages and Devices. #### CAUTION The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device. #### 9.2.1.2 Input Considerations Input signals must cross $V_{t-(min)}$ to be considered a logic LOW, and $V_{t+(max)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*. Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the SN74HCS373 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A 10-k Ω resistor value is often used due to these factors. The SN74HCS373 has no input signal transition rate requirements because it has Schmitt-trigger inputs. Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the $\Delta V_{T(min)}$ in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit. Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*. Refer to the Feature Description section for additional information regarding the inputs for this device. ### 9.2.1.3 Output Considerations The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*. Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device. Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength. Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground. Refer to the Feature Description section for additional information regarding the outputs for this device. #### 9.2.2 Detailed Design Procedure - Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the Layout section. - 2. Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit; it will, however, ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS373 to one or more of the receiving devices. - 3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)}) \Omega$. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in M Ω ; much larger than the minimum calculated previously. - 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, *CMOS Power Consumption and Cpd Calculation*. ### 9.2.3 Application Curve Figure 9-2. Example Timing Diagram for One Channel ### 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in given example layout image. ### 11 Layout ### 11.1 Layout Guidelines When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient. ### 11.2 Layout Example Figure 11-1. Example layout for the SN74HCS373 in the RKS Package ## 12 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ### 12.1 Documentation Support #### 12.1.1 Related Documentation For related documentation see the following: - Texas Instruments, HCMOS Design Considerations application report (SCLA007) - Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009) - · Texas Instruments, Designing With Logic application report ### 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 12.3 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 12.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. ### 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 12.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 23-Dec-2022 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | SN74HCS373DGSR | ACTIVE | VSSOP | DGS | 20 | 5000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HS373 | Samples | | SN74HCS373RKSR | ACTIVE | VQFN | RKS | 20 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HCS373 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## **PACKAGE OPTION ADDENDUM** www.ti.com 23-Dec-2022 #### OTHER QUALIFIED VERSIONS OF SN74HCS373: Automotive: SN74HCS373-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects ## **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Dec-2022 ### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74HCS373DGSR | VSSOP | DGS | 20 | 5000 | 330.0 | 16.4 | 5.4 | 5.4 | 1.45 | 8.0 | 16.0 | Q1 | | SN74HCS373RKSR | VQFN | RKS | 20 | 3000 | 180.0 | 12.4 | 2.8 | 4.8 | 1.2 | 4.0 | 12.0 | Q1 | www.ti.com 24-Dec-2022 ### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74HCS373DGSR | VSSOP | DGS | 20 | 5000 | 356.0 | 356.0 | 35.0 | | SN74HCS373RKSR | VQFN | RKS | 20 | 3000 | 210.0 | 185.0 | 35.0 | 2.5 x 4.5, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated