

Freescale Semiconductor

Data Sheet: Technical Data

Document Number: IMX28CEC Rev. 3, 07/2012

i.MX28 Applications Processors for Consumer Products

Silicon Version 1.2

Package Information Plastic package Case MAPBGA-289, 14 x 14 mm, 0.8 mm pitch

Ordering Information

See Table 1 on page 3 for ordering information.

1 Introduction

The i.MX28 is a low-power, high-performance applications processor optimized for the general embedded industrial and consumer markets. The core of the i.MX28 is Freescale's fast, power-efficient implementation of the ARM926EJ-STM core, with speeds of up to 454 MHz.

The device is suitable for a wide range of applications, including the following:

- Human-machine interface (HMI) panels: industrial, home
- Industrial drive, PLC, I/O control display, factory robotics display, graphical remote controls
- Handheld scanners and printers
- Patient-monitoring, portable medical devices
- Smart energy meters, energy gateways
- Media phones, media gateways

The integrated power management unit (PMU) on the i.MX28 is composed of a triple output DC-DC switching converter and multiple linear regulators. These provide power sequencing for the device and its I/O peripherals

© 2012 Freescale Semiconductor, Inc. All rights reserved.

Contents

1.	Intro	duction
	1.1.	Device Features 2
	1.2.	Ordering Information and Functional Part Differences 3
	1.3.	Block Diagram
2.	Feat	ures
	2.1.	Special Signal Considerations
3.	Elect	rical Characteristics
	3.1.	i.MX28 Device-Level Conditions
	3.2.	Thermal Characteristics
	3.3.	I/O DC Parameters 19
	3.4.	I/O AC Timing and Parameters
	3.5.	Module Timing and Electrical Parameters 27
4.	Pack	age Information and Contact Assignments 59
	4.1.	Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch . 59
	4.2.	Ground, Power, Sense, and Reference Contact
		Assignments 60
	4.3.	Signal Contact Assignments 61
	4.4.	i.MX280 Ball Map 63
	4.5.	i.MX283 Ball Map 65
	4.6.	i.MX286 Ball Map 67
	4.7.	i.MX287 Ball Map 69
5.	Revis	sion History

Introduction

such as memories and SD cards, as well as provide battery charging capability for Li-Ion batteries.

The i.MX28 processor includes an additional 128-Kbyte on-chip SRAM to make the device ideal for eliminating external RAM in applications with small footprint RTOS.

The i.MX28 supports connections to various types of external memories, such as mobile DDR, DDR2 and LV-DDR2, SLC and MLC NAND Flash.

The i.MX28 can be connected to a variety of external devices such as high-speed USB2.0 OTG, CAN, 10/100 Ethernet, and SD/SDIO/MMC.

1.1 Device Features

The following lists the features of the i.MX28:

- ARM926EJ-S CPU running at 454 MHz:
 - 16-Kbyte instruction cache and 32-Kbyte data cache
 - ARM embedded trace macrocell (CoreSightTM ETM9TM)
 - Parallel JTAG interface
- 128 KBytes of integrated low-power on-chip SRAM
- 128 KBytes of integrated mask-programmable on-chip ROM
- 1280 bits of on-chip one-time-programmable (OCOTP) ROM
- 16-bit mobile DDR (mDDR) (1.8 V), DDR2 (1.8 V) and LV-DDR2 (1.5 V), up to 205 MHz DDR clock frequency with voltage overdrive
- Support for up to eight NAND Flash memory devices with up to 20-bit BCH ECC
- Four synchronous serial ports (SSP) for SDIO/MMC/MS/SPI: SSP0, SSP1, SSP2, and SSP3. SSP0 and SSP1 can support three modes, 1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only 1-bit and 4-bit modes.
- 10/100-Mbps Ethernet MAC compatible with IEEE Std 802.3TM:
 - Single 10/100 Ethernet with GMII/RMII or Dual 10/100 Ethernet with RMII interface
 - Supporting IEEE Std 1588TM-compatible hardware timestamp
 - Supporting 50-MHz/25-MHz clock output for external Ethernet PHY
- Two 2.0B protocol-compatible Controller Area Network (CAN) interfaces
- One USB2.0 OTG device/host controller and PHY
- One USB2.0 host controller and PHY
- LCD controller, up to 24-bit RGB (DOTCK) modes and 24-bit system-mode
- Pixel-processing pipeline (PXP) supports full path from color-space conversion, scaling, alpha-blending to rotation without intermediate memory access.
- SPDIF transmitter
- Dual serial audio interface (SAIF) to support full-duplex transmit and receive operations; each SAIF supports three stereo pairs
- Five application Universal Asynchronous Receiver-Transmitters (UARTs), up to 3.25 Mbps with hardware flow control

Introduction

- One debug UART operating at up to 115 Kb/s using programmed I/O
- Two I²C master/slave interfaces, up to 400 kbps
- Four 32-bit timers and a rotary decoder
- Eight Pulse Width Modulators (PWMs)
- Real-time clock (RTC)
- GPIO with interrupt capability
- Power Management Unit (PMU) supports a triple output DC-DC switching converter, multiple linear regulators, battery charger, and detector.
- 16-channel Low-Resolution A/D Converter (LRADC). There are 16 physical channels but they can only be mapped to 8 virtual channels at a time.
- Single channel High Speed A/D Converter (HSADC), up to 2 Msps data rate
- 4/5-wire touchscreen controller
- Up to 8X8 keypad matrix with button-detect circuit
- Security features:
 - Read-only unique ID for Digital Rights Management (DRM) algorithms
 - Secure boot using 128-bit AES hardware decryption
 - SHA-1 and SHA256 hashing hardware
 - High assurance boot (HAB4)
- Offered in 289-pin Ball Grid Array (BGA)

1.2 Ordering Information and Functional Part Differences

Table 1 provides the ordering information for the i.MX28.

Table 1. Ordering Information

Part Number	Projected Temperature Range (°C)	Package
MCIMX280DVM4B	-20 to +70	14 x 14 mm, 0.8mm pitch, MAPBGA-289
MCIMX280CVM4B	-40 to +85	14 x 14 mm, 0.8mm pitch, MAPBGA-289
MCIMX283DVM4B	-20 to +70	14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX283CVM4B	-40 to +85	14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX286DVM4B	-20 to +70	14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX286CVM4B	-40 to +85	14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX287CVM4B	-40 to +85	14 x 14 mm, 0.8 mm pitch, MAPBGA-289

Introduction

Table 2 provides the functional differences between the i.MX280, i.MX283, i.MX286, and i.MX287.

Function	i.MX280	i.MX283	i.MX286	i.MX287
Application UART	x5	x5	x5	x5
Debug UART	x1	x1	x1	x1
CAN	—	—	x2	x2
Ethernet	x1	x1	x1	x2
High-speed ADC	x1	x1	x1	x1
L2 Switch	—	_	—	Yes
LCD Interface	—	Yes	Yes	Yes
LRADC ¹	x8	x8	x8	x8
PWM	x8	x8	x8	x8
S/PDIF Tx	—	—	Yes	Yes
SD/SDIO/MMC ²	x4	x4	x4	x4
Security	Yes	Yes	Yes	Yes
SPI	x4	x4	x4	x4
Touch Screen	—	Yes	Yes	Yes
USB 2.0	OTG HS with HS PHY x1	OTG HS with HS PHY x1	OTG HS with HS PHY x1	OTG HS with HS PHY x1
	HS Host with HS PHY x1	HS Host with HS PHY x1	HS Host with HS PHY x1	HS Host with HS PHY x1

Table 2. i.MX28 Functional Differences

¹ There are 16 physical channels but they can only be mapped to 8 virtual channels at a time.

² For SD/SDIO/MMC, four synchronous serial ports (SSP) are available: SSP0, SSP1, SSP2, and SSP3. SSP0 and SSP1 can support three modes,1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only 1-bit and 4-bit modes.

1.3 Block Diagram

Figure 1 shows the simplified interface block diagram.

Figure 1. i.MX28 Simplified Interface Block Diagram

Features

2 Features

Table 3 shows the device functions.

Table	3.	i.MX28	Functions
	•••		

Function	BGA289
External Memory Interface (EMI) (1.5 V LV-DDR2, 1.8 V DDR2, 1.8 V LP-DDR1)	Yes
General-Purpose Media Interface (GPMI): • NAND data width • Number of external NANDs supported	8-bit 4 dedicated / 8 with muxing
Pulse Width Modulator (PWM)	5 dedicated / 8 with muxing
Application UART (AUART): Interfaces supported	4 dedicated / 5 with muxing
Synchronous Serial Port (SSP): Supported through dedicated pins	3 dedicated / 4 with muxing
l ² C	1 dedicated / 2 with muxing
SPDIF	1
SAIF	2
FlexCAN	2
LCD interface	24 bits
High-speed ADC	Yes
LRADC (touchscreen, keypad)	Yes
Ethernet MAC and switch	Up to 2 MACs with switch
Universal Serial Bus (USB)	2

Table 4 describes the digital and analog modules of the device.

NP

Block Mnemonic	Block Name	Subsystem	Brief Description
APBHDMA	AHB to APBH Bridge with DMA	System control	The AHB to APBH bridge with DMA includes the AHB-to-APB PIO bridge for memory-mapped I/O to the APB devices, as well a central DMA facility for devices on this bus. The bridge provides a peripheral attachment bus running on the AHB's HCLK. (The 'H' in APBH denotes that the APBH is synchronous to HCLK, as compared to APBX, which runs on the crystal-derived XCLK.) The DMA controller transfers read and write data to and from each peripheral on APBH bridge.
APBXDMA	AHB to APBX Bridge with DMA	System control	The AHB-to-APBX bridge includes the AHB-to-APB PIO bridge for memory-mapped I/O to the APB devices, as well a central DMA facility for devices on this bus. The AHB-to-APBX bridge provides a peripheral attachment bus running on the AHB's XCLK. (The 'X' in APBX denotes that the APBX runs on a crystal-derived clock, as compared to APBH, which is synchronous to HCLK.) The DMA controller transfers read and write data to and from each peripheral on APBX bridge.
ARM9 or ARM926	ARM926EJ-S CPU	ARM [®]	The ARM926 Platform consists of the ARM926EJ-S [™] core and the ETM real-time debug modules. It contains the 16-Kbyte L1 instruction cache, 32-Kbyte L1 data cache, 128-Kbyte ROM and 128-Kbyte RAM.
AUART(5)	Application UART interface	Connectivity peripherals	 Each of the UART modules supports the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, one or two stop bits, programmable parity (even, odd, or none) Programmable baud rates up to 3.25 MHz. This is a higher maximum baud rate than the 1.875 MHz specified by the TIA/EIA-232-F standard and previous Freescale UART modules. 16-byte FIFO on Tx and 16-byte FIFO on Rx supporting auto-baud detection
BCH	Bit-correcting ECC accelerator	Connectivity peripherals	The Bose, Ray-Chaudhuri, Hocquenghem (BCH) Encoder and Decoder module is capable of correcting from 2 to 20 single bit errors within a block of data no larger than about 900 bytes (512 bytes is typical) in applications such as protecting data and resources stored on modern NAND Flash devices.
BSI	Boundary Scan Interface	Connectivity peripherals	The boundary scan interface is provided to enable board level testing. There are five pins on the device which is used to implement the IEEE Std 1149.1 [™] boundary scan protocol.
CLKCTRL	Clock control module	Clocks	The clock control module, or CLKCTRL, generates the clock domains for all components in the i.MX28 system. The crystal clock or PLL clock are the two fundamental sources used to produce most of the clock domains. For lower performance and reduced power consumption, the crystal clock is selected. The PLL is selected for higher performance requirements but requires increased power consumption. In most cases, when the PLL is used as the source, a Phase Fractional Divider (PFD) can be programmed to reduce the PLL clock frequency by up to a factor of 2.
DCP	Data co-processor	Security	This module provides support for general encryption and hashing functions typically used for security functions. Because its basic job is moving data from memory to memory, it also incorporates a memory-copy (memcopy) function for both debugging and as a more efficient method of copying data between memory blocks than the DMA-based approach.

Features

Block Mnemonic	Block Name	Subsystem	Brief Description	
DFLPT	Default first-level page table	System control	The DFLPT provides a unique method of implementing the ARM MMU first-level page table (L1PT) using a hardware-based approach.	
DIGCTL	Digital control and on-chip RAM	System control	The digital control module includes sections for controlling the SRAM, the performance monitors, high-entropy pseudo-random number seed, free-running microseconds counter, and other chip control functions.	
DUART	Debug UART	Connectivity peripherals	 The Debug UART performs the following data conversions: Serial-to-parallel conversion on data received from a peripheral device Parallel-to-serial conversion on data transmitted to the peripheral device 	
EMI	External memory interface	Connectivity peripherals	 The i.MX28 supports off-chip DRAM storage through the EMI controller, which is connected to the four internal AHB/AXI busses. The EMI supports multiple external memory types, including: 1.8-V Mobile DDR1 (LP-DDR1) Standard 1.8-V DDR2 Low Voltage 1.5-V DDR2 (LV-DDR2) 	
ENET	Ethernet MAC Controller	Connectivity peripherals	Ethernet MAC controller connected to the uDMA (unified DMA). Supports 10/100 Mbps with TCP/UDP/IP Acceleration and IEEE 1588 Functions; also supports RMII or MII connectivity.	
FlexCAN(2)	Controller area network module	Connectivity peripherals	The Controller Area Network (CAN) protocol is a message based protocol used for serial data. It was designed specifically for automotive but is also used in industrial control and medical applications. The serial data bus runs at 1 Mbps.	
GPMI	General-pur- pose media interface	Connectivity peripherals	The General-Purpose Media Interface (GPMI) controller is a flexible NAND Flash controller with 8-bit data width, up to 50-MBps I/O speed and individual chip select and DMA channels for up to 8 NAND devices. It also provides a interface to 20-bit BCH for ECC.	
HSADC	High-speed ADC	Connectivity peripherals	The high-speed ADC block is designed to sample an analog input with 12-bit resolution and a sample rate of up to 2 Msps. The output of the HSADC block can be moved to the external memory through APBH-DMA. A typical user case of the HSADC is to work with the PWM block to drive an external linear image scanner sensor.	
l ² C(2)	I ² C module	Connectivity peripherals	The I ² C is a standard two-wire serial interface used to connect the chip with peripherals or host controllers. The I ² C operates up to 400 kbps in either I ² C master or I ² C slave mode. Each I ² C has a dedicated DMA channel and can also controlled by CPU in PIO or PIO queue modes. It supports both 7-bit and 10-bit device address in master mode, and has programmable 7-bit address in slave mode.	
ICOLL	Interrupt Collector	System control	The ARM9 CPU core has two interrupt input lines, IRQ and FIQ. The interrupt collector (ICOLL) can steer any of 128 interrupt sources to either the FIQ or IRQ line of the ARM9 CPU.	
L2 Switch	3-Port L2 Switch	Network Control	Programmable 3-Port Ethernet Switch with QOS	

Table 4. i.MX28 Digital and Analog Mo	odules (continued)
---------------------------------------	--------------------

Table 4. i.MX28 Digital and Analog Modules	(continued)
--	-------------

Block Mnemonic	Block Name	Subsystem	Brief Description
LCDIF	LCD Interface	Multimedia peripherals	The LCDIF provides display data for external LCD panels from simple text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF supports all of these different interfaces by providing fully programmable functionality and sharing register space, FIFOs, and ALU resources at the same time. The LCDIF supports RGB (DOTCLK) modes as well as system mode including both VSYNC and WSYNC modes.
LRADC	Low resolution ADC module	Connectivity peripherals	The sixteen-channel 12-bit low-resolution ADC (LRADC) block is used for voltage measurement. Channels 0 – 6 measure the voltage on the seven application-dependent LRADC pins. The auxiliary channels can be used for a variety of uses, including a resistor-divider-based wired remote control, external temperature sensing, touch-screen, and other measurement functions.
OCOTP Controller	On-chip OTP controller	Security	The on-chip one-time-programmable (OCOTP) ROM serves the functions of hardware and software capability bits, Freescale operations and unique-ID, the customer-programmable cryptography key, and storage of various ROM configuration bits.
PINCTRL	Pin control and GPIO	System control peripherals	Used for general purpose input/output to external ICs. Each GPIO bank supports 32 bits of I/O.
PMU	Power management Unit (DC-DC)	Power management system	 The i.MX28 integrates a comprehensive power supply subsystem, including the following features: One integrated DC-DC converter that supports Li-Ion battery. Four linear regulators directly power the supply rails from 5-V. Linear battery charger for Li-Ion cells. Battery voltage and brownout detection monitoring for VDDD, VDDA, VDDIO, VDD4P2 and 5-V supplies. Integrated current limiter from 5-V power source. Reset controller. System monitors for temperature and speed. Generates USB-Host 5-V from Li-Ion battery (using PWM). Support for on-the-fly transitioning between 5-V and battery power. VDD4P2, a nominal 4.2-V supply, is available when the i.MX28 is connected to a 5-V source and allows the DCDC to run from a 5-V source with a depleted battery. The 4.2-V regulated output also allows for programmable current limits: – Battery Charge current + DCDC input current < the 5-V current limit DCDC input current (which ultimately provides current to the on-chip and off-chip loads) as the priority and battery charge current is automatically reduced if the 5-V current limit is reached
PWM(8)	Pulse width modulation	Connectivity peripherals	There are eight PWM output controllers that can be used in place of GPIO pins. Applications include HSADC driving signals and LED & backlight brightness control. Independent output control of each phase allows 0, 1, or high-impedance to be independently selected for the active and inactive phases. Individual outputs can be run in lock step with guaranteed non-overlapping portions for differential drive applications.
PXP	Pixel Pipeline	Multimedia	The pixel pipeline (PXP) is used to perform alpha blending of graphic or video buffers with graphics data before sending to an LCD display. The PXP also supports image rotation for hand-held devices that require both portrait and landscape image support.

Features

	Table 4. I.MA26 Digital and Analog Modules (continued)						
Block Mnemonic	Block Name	Subsystem	Brief Description				
RTC	Real-time clock, alarm, watchdog	Clocks	The real-time clock (RTC) and alarm share a one-second pulse time domain. The watchdog reset and millisecond counter run on a one-millisecond time domain. The RTC, alarm, and persistent bits reside in a special power domain (crystal domain) that remains powered up even when the rest of the chip is in its powered-down state.				
SAIF(2)	Serial audio interface	Connectivity peripherals	SAIF provides a half-duplex serial port for communication with a variety of serial devices, including industry-standard codecs and DSPs. It supports a continuous range of sample rates from 8 kHz–192 kHz using a high-resolution fractional divider driven by the PLL. Samples are transferred to/from the FIFO through the APBX DMA interface, a FIFO service interrupt, or software polling.				
SPDIF	SPDIF	Connectivity peripherals	The Sony-Philips Digital Interface Format (SPDIF) transmitter module transmits data according to the SPDIF digital audio interface standard (IEC-60958).				
SSP(4)	Synchronous serial port	Connectivity peripherals	The synchronous serial port is a flexible interface for inter-IC and removable media control and communication. The SSP supports master operation of SPI, Texas Instruments SSI; 1-bit, 4-bit, and 8-bit SD/SDIO/MMC and 1-bit and 4-bit MS modes. The SPI mode has enhancements to support 1-bit legacy MMC cards. SPI master dual (2-bit) and quad (4-bit) mode reads are also supported. The SSP also supports slave operation for the SPI and SSI modes. The SSP has a dedicated DMA channel in the bridge and can also be controlled directly by the CPU through PIO registers. Each of the four SSP modules is independent of the other and can have separate SSPCLK frequencies.				
TIMROT	Timers and Rotary Decoder	Timer peripherals	This module implements four timers and a rotary decoder. The timers and decoder can take their inputs from any of the pins defined for PWM, rotary encoders, or certain divisions from the 32-kHz clock input. Thus, the PWM pins can be inputs or outputs, depending on the application.				
USBOTG USBHOST	High-speed USB on-the-go	Connectivity peripherals	The USB module provides high-performance USB On-The-Go (OTG) and host functionality (up to 480 Mbps), compliant with the USB 2.0 specification and the OTG supplement. The module has DMA capabilities for handling data transfer between internal buffers and system memory. When the OTG controller works in device mode, it can only work in FS or HS mode. Two USB2.0 PHYs are also integrated (one for the OTG port, another for the host port.)				
USBPHY	Integrated USB PHY	Connectivity peripherals	The integrated USB 2.0 PHY macrocells are capable of connecting to USB host/device systems at the USB low-speed (LS) rate of 1.5 Mbps, full-speed (FS) rate of 12 Mbps or at the USB 2.0 high-speed (HS) rate of 480 Mbps. The integrated PHYs provide a standard UTM interface. The USB_DP and USB_DN pins connect directly to a USB connector.				

Table 4. i.MX28	Digital and	Analog	Modules	(continued)
-----------------	--------------------	--------	---------	-------------

2.1 Special Signal Considerations

Special signal considerations are listed in Table 5. The package contact assignment is found in Section 4, "Package Information and Contact Assignments." Signal descriptions are provided in the reference manual.

Signal	Descriptions
PSWITCH	The pin is used for chip power on or recovery. VDDIO can be applied to PSWITCH through a 10 k Ω resistor. This is necessary in order to enter the chip's firmware recovery. The on-chip circuitry prevents the actual voltage on the pin from exceeding acceptable levels.
VDDXTAL	This pin is an output of i.MX28. Should be coupled to ground with a 0.1 uF capacitor. User should not supply external power to this pin.
BATTERY	This pin should be connected to the battery with minimal resistance. It provides charging current to the battery. See the "Power Supply" section of the reference manual for details.
DCDC_BATTERY	This pin is an input of i.MX28 that provides supply to the DCDC converter. It should be connected to the battery with minimal resistance. See the "Power Supply" section of the reference manual for details.
XTALI XTALO	These analog pins are connected to an external 24 MHz crystal circuit. This crystal provides the clock source for on-chip PLLs.
RTC_XTALO RTC_XTALI	These analog pins are connected to an external 32.768/32.0 kHz crystal circuit. This crystal provides clock source to the on-chip real-time counter circuits.
RESETN	This pin resets the chip if it is low. This pin is pulled up to VDDIO33 with an internal 10 k Ω resistor. No external pull up resistors are needed.
DEBUG	This pin is used for JTAG interface. DEBUG=0: JTAG interface works for boundary scan. DEBUG=1: JTAG interface works for ARM debugging.
TESTMODE	For Freescale factory use only. Must be externally connected to GND for normal operation.

Table 5. Signal Considerations

3 Electrical Characteristics

This section provides the device-level and module-level electrical characteristics for the i.MX28.

3.1 i.MX28 Device-Level Conditions

This section provides the device-level electrical characteristics for the IC.

3.1.1 DC Absolute Maximum Ratings

Table 6 provides the DC absolute maximum operating conditions.

CAUTION

• Stresses beyond those listed under Table 6 may cause permanent damage to the device.

- Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- Table 6 gives stress ratings only—functional operation of the device is not implied beyond the conditions indicated in Table 8.

Parameter	Symbol	Min.	Max.	Unit
Battery Pin	BATT, V _{DD4P2V}	-0.3	4.242	V
5-Volt Source Pin - transient, t<30ms, duty cycle <0.05%	V _{DD5V}	-0.3	7.00	V
5 Volt Source Pin - static	V _{DD5V}	-0.3	6.00	V
Analog Supply Voltage	V _{DDA}	-0.3	2.10	V
Digital Core Supply Voltage	V _{DDD}	-0.3	1.575	V
Non-EMI Digital I/O Supply	V _{DDIO}	-0.3	3.63	V
EMI Digital I/O Supply	V _{DDIO.EMI}	-0.3	3.63	V
DC-DC Converter ¹	DCDC_BATT	-0.3	BATT	V
Input Voltage on Any Digital I/O Pin Relative to Ground	—	-0.3	VDDIO+0.3	V
Input Voltage on USB_DP and USB_DN Pins Relative to Ground ²	—	-0.3	3.63	V
Analog I/O absolute maximum ratings (exceptions: XTALI, XTALO, RTC_XTALI, RTC_XTALO)	_	-0.3	VDDIO+0.3	V
Storage Temperature	—	-40	125	°C

Table 6. DC Absolute Maximum Ratings

¹ Application should include a Schottky diode between BATT and VDD4P2.

² USB_DN and USB_DP can tolerate 5V for up to 24 hours. Note that while 5V is applied to USB_DN or USB_DP, LRADC readings can be corrupted.

Table 7 shows the electrostatic discharge immunity.

Table 7. Electrostatic Discharge Immunity

289-Pin BGA Package	Tested Level		
Human Body Model (HBM) ¹	2 kV		
Charge Device Model (CDM) ¹	500 V		

¹ HBM and CDM pass ESD testing per AEC-Q100.

3.1.2 DC Operating Conditions

Table 8 provides the DC recommended operating conditions.

Parameter	Symbol	Min	Тур	Мах	Unit
Analog Core Supply Voltage	V _{DDA}	1.62		2.10	V
Digital Core Supply Voltage Specification dependent on frequency. ^{1, 2}	V _{DDD}	1.35	—	1.55	V
Digital Supply Voltages: • VDDIO33/VDDIO33_EMI • VDDIO18	V _{DDIO33} /V _{DDIO33} _EMI/V _{DDI} O18	3.0 1.7	_	3.6 1.9	V
EMI Digital I/O Supply Voltage: • DDR2/mDDR • LVDDR2	V _{DDIO.EMI} /V _{DDIO_EMIQ}	1.7 1.425	1.8 1.5	1.9 1.625	V
Battery / DCDC Input Voltage—BATT, DCDC_BATT	BATT DCDC_BATT	3.10 ³	—	4.242	V
VDD5V Supply Voltage	—	4.75	5.00	5.25	V
Offstate Current: ⁴					
• 32-kHz RTC off, BATT = 4.2 V	—	—	21	47	μA
• 32-kHz RTC on, BATT = 4.2 V	—	—	23	51	μA

¹ For optimum USB jitter performance, V_{DDD} = 1.35 V or greater.

² V_{DDD} supply minimum voltage includes 75 mV guardband.

³ Tested with only the i.MX28 processor loading the MX28 PMU output rails during start up. With external loadings (for example, one DDR2 device and SD Card/NAND Flash), MX28 PMU was tested at BATT/DCDC_BATT > 3.30 V.

⁴ When the real-time clock is enabled, the chip consumes additional current in the OFF state to keep the crystal oscillator and the real-time clock running.

Table 9 provides the DC operating temperature conditions.

Parameter ^{1, 2, 3}	Symbol	Min	Тур	Мах	Unit
Commercial Ambient Operating Temperature Range	T _A	-20	—	70	°C
Commercial Junction Temperature Range	TJ	-20	—	85	°C
Industrial Ambient Operating Temperature Range	T _A	-40	—	85	°C
Industrial Junction Temperature Range	TJ	-40	—	105	°C

¹ In most portable systems designs, battery and display specifications limits the operating range to well within these specifications. Most battery manufacturers recommend enabling battery charge only when the ambient temperature is between 0°C and 40°C. To ensure that battery charging does not occur outside the recommended temperature range, the system ambient temperature may be monitored by connecting a thermistor to the LRADC0 or LRADC6 pin on the i.MX28.

² For applications powered by external 5V only, the Maximum Ambient Operating Temperature specified in Table 9 may not be achieved. Application developers need to do the worst-case power consumption estimation, and then calculate the Total On-chip Power Dissipation based on the equations specified in note 3 below.

³ Maximum Ambient Operating Temperature may be limited due to on-chip power dissipation. $T_{A (MAX)} \le T_{J} - (\Theta_{JA} \times P_{D})$ where: T_J = Maximum Junction Temperature

Θ_{JA} = Package Thermal Resistance. See Section 3.2, "Thermal Characteristics."

P_D = Total On-chip Power Dissipation = PVDD4P2 + PBatteryCharger + PDCDC + PLinearRegulators + PInternal. Depending on the application, some of these power dissipation terms may not apply.

PVDD4P2 = VDD4P2 On-Chip Power Dissipation = (VDD5V - VDD4P2) x IDD4P2

PBatteryCharger = Battery Charger On-Chip Power Dissipation = (VDD5V - BATT) x ICHARGE

PDCDC = DC-DC Converter On-Chip Power Dissipation = (BATT x DCDC Input Current) x (1 - efficiency)

PLinearRegulators = Linear Regulator On-Chip Power Dissipation = (VDD5V - VDDIO) x (IDDIO + IDDA + IDDD + IDD1P5) +

(VDDIO - VDDA) x (IDDA + IDDD) + (VDDA - VDDD) x IDDD + (VDDA - VDD1P5) x IDD1P5

PInternal = Internal Digital On-Chip Power Dissipation = ~VDDD x IDDD

Table 10 provides the recommended analog operating conditions.

Table 10. Recommended Analog Operating Conditions

Parameter	Min	Тур	Мах	Unit
Low Resolution ADC Input Impedance (CH0 - CH5)	>1		—	MΩ

Table 11 shows the PSWITCH input characteristics. See the reference schematics for the recommended PSWITCH button circuitry.

Table 11. PSWITCH Input Characteristics

Parameter	HW_PWR_STS_PSWITCH	Min	Max	Unit
PSWITCH LOW LEVEL	0x00	0.00	0.30	V
PSWITCH MID LEVEL & STARTUP ¹	0x01	0.65	1.50	V
PSWITCH HIGH LEVEL ²	0x11	(1.1 * VDDXTAL) + 0.58	2.45	V

¹ A MID LEVEL PSWITCH state can be generated by connecting the VDDXTAL output of the SoC to PSWITCH through a switch.

² PSWITCH acts like a high impedance input (>300 k Ω) when the voltage applied to it is less than 1.5V. However, above 1.5V it becomes lower impedance. To simplify design, it is recommended that a 10 k Ω resistor to VDDIO be applied to PSWITCH to set the HIGH LEVEL state (the PSWITCH input can tolerate voltages greater than 2.45 V as long as there is a 10 k Ω resistor in series to limit the current).

Table 12 shows a test case example for Run IDD.

Table 12. Run IDD Test Case^{1,2}

Power Rail	Conditions	Min	Тур	Max	Unit
VDDD	1.57 V	—	150	188	mA
VDDIO33	3.62 V	—	31	34	mA
VDDA	2.12 V	—	1.11	1.17	mA
VDDIO_EMI	1.92 V	—	1.01	1.08	mA
VDDIO18	1.92 V	—	0.61	2.97	μA

¹ CPUCLK = 300 MHz, AHBCLK = 150 MHz

² Continuous read / write to the cache memory

Table 13 illustrates the power supply characteristics.

Table 13. Power Supply Characteristics

Parameter	Min	Тур	Max	Unit
Linear Regulators				
Output Voltage Accuracy (V _{DDIO} , V _{DDA} , V _{DDM} , V _{DDD}) ¹	-3	—	+3	%
V_{DDIO} Maximum Output Current (V_{DDIO} = 3.30 V, V_{DD5V} = 4.75 V) ^{2, 3}	270	—	—	mA
V_{DDM} Maximum Output Current $(V_{DDM} = 1.5 V)^2$	160	—	—	mA
V_{DDA} Maximum Output Current ($V_{DDA} = 1.8 \text{ V}$) ^{2, 3}	225	—	—	mA
V_{DDD} Maximum Output Current $(V_{DDD} = 1.2 \text{ V})^{2, 3}$	200	—	—	mA
DCDC Converters				
Output Voltage Accuracy (DCDC_VDDIO, DCDC_VDDA, DCDC_VDDD) ¹	-3	_	+3	%
DCDC_VDDD Maximum Output Current $(V_{DDD} = 1.55 \text{ V})^{4, 5}$	250	—	_	mA
DCDC_VDDA Maximum Output Current $(V_{DDA} = 1.8 \text{ V})^{4, 5}$	200	—	—	mA
DCDC_VDDIO Maximum Output Current (V _{DDIO} = 3.15 V, 3.3 V < BATT < 4.242 V) ^{4, 5, 6}	250	_	—	mA
VDD4P2 Regulated Output				
VDD4P2 Output Voltage Accuracy (TARGET=4.2V) ¹	-3	_	+3	%
VDD4P2 Output Current Limit Accuracy (VDD5V = 4.75 V, ILIMIT=480 mA) ⁷	480	500	520	mA
VDD4P2 Output Current Limit Accuracy (VDD5V=4.75 V, ILIMIT=100 mA) ⁷	100	120	140	mA
Battery Charger		•		•
Final Charge Voltage Accuracy (TARGET=4.2 V)	-2	_	+1	%

1 No load.

2 Maximum output current measured when output voltage droops 100 mV from the programmed target voltage with no load present.

³ Because the internal linear regulators are cascaded, it is not possible to simultaneously operate the V_{DDIO}, V_{DDA}, V_{DDM}, and V_{DDD} linear regulators at the maximum specified load current. For example, the V_{DDIO} linear regulator provides current to both the V_{DDIO} 3.3 V supply rail as well as the V_{DDM} and V_{DDA} linear regulator inputs. Likewise, the V_{DDA} linear regulator provides current to both the 1.8 V supply rail as well as the V_{DDD} linear regulator input. The application designer should ensure the following two conditions are met:

 $(V_{DDIO} \ Load \ Current + V_{DDM} \ Load \ Current + V_{DDA} \ Load \ Current) < V_{DDIO} \ Maximum \ Output \ Current \\ (V_{DDA} \ Load \ Current + V_{DDD} \ Load \ Current) < V_{DDA} \ Maximum \ Output \ Current \\$

- ⁴ DCDC Double FETs Enabled, Inductor Value = 15 μH.
- ⁵ The DCDC Converter is a triple output buck converter. The maximum output current capability of each output of the converter is dependent on the loads on the other two outputs. For a given output, it may be possible to achieve a maximum output current higher than that specified by ensuring the load on the other outputs is well below the maximum.

⁶ Assumes simultaneous load of IDDD = 250 mA@ 1.55 V and IDDA = 200 mA@1.8 V.

⁷ Untuned.

3.1.2.1 Recommended Operating Conditions for Specific Clock Targets

Table 14 through Table 17 provide the recommended operating conditions for specific clock targets.

VDDD (V)	VDDD Brown-out (V)	HW_ DIGCTRL ARMCACH E ¹	CPUCLK / clk_p Frequency (MHz)	HW_ CLKCTRL CPU_DIV_CP U	HW_ CLKCTRL FRAC_ CPUFRC / PFD	AHBCLK / clk_h Frequency (MHz)	HW_ Clkctrl HBUS_DI V	EMICLK / clk_emi Frequency (MHz)	HW_ CLKCTRL EMI_ DIV_EMI	HW_ CLKCTRL FRAC_ EMIFRAC	Supported DRAM
1.300	1.200	00	64	5	27	64	1	130.91	2	33	DDR2 mDDR
1.350	1.250	00	261.81	1	33	130.91	2	130.91	2	33	DDR2 mDDR
1.350	1.250	00	360	1	24	120.00	3	130.91	2	33	DDR2 mDDR
1.450	1.350	00	392.72	1	22	130.91	3	160.00	2	27	DDR2 mDDR
1.550	1.450	00	454.73	1	19	151.57	3	205.71	2	21	DDR2 mDDR

Table 14. Recommended Operating States—289-Pin BGA Package

¹ All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.

Table 15. Recommended Operating Conditions—CPU Clock (clk_p)

VDDD (V)	VDDD _{Brown-out} (V)	HW_DIGCTRL ARMCACHE ¹	HW_CLKCTRL FRAC_CPUFRC / PFD	CPUCLK / clk_p Frequency max (MHz)
1.350	1.250	00	18 - 35	360
1.450	1.350	00	18 - 35	392.72
1.550	1.450	00	18 - 35	454.73

¹ All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.

Table 16. Recommended Operating Conditions—AHB Clock (clk_h)

VDDD (V)	VDDD _{Brown-out} (V)	HW_DIGCTRL ARMCACHE ¹	HW_CLKCTRL FRAC_CPUFRC / PFD	AHBCLK / clk_h Frequency max (MHz)
1.350	1.250	00	18 - 35	160
1.450	1.350	00	18 - 35	196
1.550	1.45	00	18 - 35	206

¹ All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.

VDDD (V)		EMICLK F	max (MHz)
	VDDD _{Brownout} (V)	DDR2	mDDR
1.550	1.450	205.71	205.71
1.450	1.350	196.36	196.36
1.350	1.250	196.36	196.36

Table 17. Frequency vs. Voltage for EMICLK—289-Pin BGA Package

3.1.3 **Fusebox Supply Current Parameters**

Table 18 lists the fusebox supply current parameters.

Table 18. Fusebox Supply Current Parameters

Parameter	Symbol	Min	Тур	Max	Unit
eFuse Program Current ¹ Current to program one eFuse bit efuse_vddq=2.5V	Iprogram	21.39	25.05	33.54	mA
eFuse Read Current ² Current to read an 8-bit eFuse word vdd_fusebox = 3.3 V	I _{read}	_	_	4.07	mA

¹ The current I_{program} is during program time.

² The current I_{read} is present for approximately 10 ns of the read access to the 8-bit word.

3.1.4 Interface Frequency Limits

Table 19 provides information for interface frequency limits.

Table 19. Interface Frequency Limits

Parameter	Min.	Тур.	Max.	Unit
JTAG: TCK Frequency of Operation	_	—	10	MHz
OSC24M_XTAL Oscillator	—	24.000	_	MHz
OSC32K_XTAL Oscillator	—	32.768/32.0	—	kHz

3.1.5 Power Modes

Table 20 describes the core, clock, and module settings for the different power modes of the processor.

Table 20. Power Mode Settings

Core/Clock/Module	Offstate	Standby	Run
ARM Core	Off	Off	On
USB0 PLL (System PLL)	Off	Off	On
OSC24M	Off	On	On

Core/Clock/Module	Offstate	Standby	Run
OSC32K	On	On	On
DCDC	Off	On	On
RTC	On	On	On
Other Modules	Off	On/Off	On/Off

 Table 20. Power Mode Settings (continued)

3.1.6 Supply Power-Up/Power-Down Requirements

There is no special power-up sequence. After applying 5 V or battery in any order, the rest of the power supplies are internally generated and automatically come up in a safe way.

There is no special power-down sequence. 5 V or the battery can be removed at any time.

3.1.7 Reset Timing

Because the i.MX28 is a PMU and an SoC, power-on reset is generated internally and there is no timing requirement on external pins.

The i.MX28 can be reset by asserting the external pin RESETN for at least 100 mS and later deasserting RESETN.

If the reset occurs while the device is only powered by the battery, then the reset kills all of the power supplies and the system reboots on the assertion of PSWITCH. If auto-restart is set up ahead of time, the system reboots immediately.

If the chip is powered by 5 V, then the reset serves to reset the digital sections of the chip. If the DCDC is operating at the time of the reset, then power switches back to the default linear regulators powered by 5 V.

Figure 2. RESETN Timing

3.2 Thermal Characteristics

The thermal resistance characteristics for the device are given in Table 21. These values are measured under the following conditions:

- Two layer Substrate
- Substrate solder mask thickness: 0.025 mm
- Substrate metal thicknesses: 0.016 mm
- Substrate core thickness: 0.160 mm

- Core via I.D: 0.068 mm, Core via plating 0.016 mm
- Flag: trace style with ground balls under the die connected to the flag
- Die Attach: 0.033 mm non-conductive die attach, k = 0.3 W/m K
- Mold Compound: generic mold compound, k = 0.9 W/m K

Table 21. Thermal Resistance Data

Rating			Value	Unit
Junction to ambient ¹ natural convection	Single layer board (1s)	R _{θJA}	62	°C/W
Junction to ambient ¹ natural convection	Four layer board (2s2p)	R _{θJA}	36	°C/W
Junction to ambient ¹ (@200 ft/min)	Single layer board (1s)	R _{θJMA}	53	°C/W
Junction to ambient ¹ (@200 ft/min)	Four layer board (2s2p)	R _{θJMA}	33	°C/W
Junction to boards ²		R _{θJB}	24	°C/W
Junction to case (top) ³		R _{0JCtop}	15	°C/W
Junction to package top ⁴	Natural Convection	Ψ_{JT}	3	°C/W

¹ Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2 and JESD51-6. Thermal test board meets JEDEC specification for this package.

- ² Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- ³ Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- ⁴ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

3.3 I/O DC Parameters

This section includes the DC parameters of the following I/O types:

- DDR I/O: Mobile DDR (LPDDR1), standard 1.8 V DDR2, and low-voltage 1.5 V DDR2 (LVDDR2)
- General purpose I/O (GPIO)

3.3.1 DDR I/O DC Parameters

Table 22 shows the EMI digital pin DC characteristics.

NOTE

The current values and the I-V curves of the I/O DC characteristics are estimated based on an overly conservative device model. They are updated upon the measurement results of the first silicon.

5							
Parameter	Symbol	Min.	Max.	Unit			
Input voltage high (dc)	VIH	VREF + 0.125	VDDIO_EMI + 0.3	V			
Input voltage low (dc)	VIL	0.3	VREF – 0.125	V			
Output voltage high (dc)	VOH	0.8 * VDDIO_EMI	_	V			
Output voltage low (dc)	VOL	-	0.2 * VDDIO_EMI	V			
Output source current (dc) LVDDR2 Mode	IOH ¹ —Low	-6.2	_	mA			
	IOH—Medium	-7.2	_	mA			
	IOH—High	-9.7	_	mA			
Output sink current (dc)	IOL ² —Low	5.7	—	mA			
LVDDR2 Mode	IOL—Medium	7.3	_	mA			
	IOL—High	10.0	_	mA			
Output source current (dc)	IOH—Low	-5.7	_	mA			
mDDR, DDR2 Mode	IOH—High	-7.5	_	mA			
Output sink current (dc)	IOL—Low	5.4	—	mA			
mDDR, DDR2 Mode	IOL—High	8.8	—	mA			

Table 22. EMI Digital Pin DC Characteristics

¹ IOH is the output current at which the VOH specification is met.

 $^2\,$ IOL is the output current at which the VOL specification is met.

Table 23 shows the ON impedance of EMI drivers for different drive strengths.

Mode	Drive	Min. (Ω)	Τур. (Ω)	Max. (Ω)
1.5	Low	26	38	58
LVDDR2	Medium	17	25	36
	High	15	20	27
1.8 DDR2/mDDR	Low	36	53	78
	Medium	17	27	42
	High	16	19	28

Table 23. ON Impedance of EMI Drivers for Different Drive Strengths¹

¹ ON impedance of the EMI drivers are guaranteed by design and are not tested during production.

Table 24 shows the external devices supported by the EMI.

DRAM Device	Max Load ^{1, 2}	Pad Voltage
DDR2	15 pF	1.8 V
mDDR	15 pF	1.8 V
LVDDR2	15 pF	1.5 V

Table 24. External Devices Supported by the EMI

¹ Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading.

² Setting is for worst case. Freescale's EMI interface uses less powerful drivers than those typically used in mDDR devices. A possible transmission-line effect on the PC board must be suppressed by minimizing the trace length combined with Freescale's slower edge-rate drivers. The i.MX28 provides up to 16 mA programmable drive strength. However, the 16-mA mode is an experimental mode. With the 16-mA mode, the EMI function may be impaired by Simultaneous Switching Output (SSO) noise. In general, the stronger the driver mode, the noisier the on-chip power supply. Freescale recommends not using a stronger driver mode than is required. Because on-chip power and ground noise is proportional to the inductance of its return path, users should make their best effort to reduce inductance between the EMI power and ground balls and the PC board power and ground planes.

3.3.2 GPIO I/O DC Parameters

Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading. For the internal pull up setting of each pad, see the "Pin Control and GPIO" section of the reference manual.

Table 25 shows the digital pin DC characteristics for GPIO in 3.3-V mode. Measurements are valid for eight pins loaded using the 4mA driver, four pins loaded using the 8mA driver, and two pins loaded using either the 12mA or 16mA driver.

Parameter	Symbol	Min	Мах	Unit
Input voltage high (dc)	VIH	2	VDDIO	V
Input voltage low (dc)	VIL	—	0.8	V
Output voltage high (dc)	VOH	0.8 imes VDDIO		V
Output voltage low (dc)	VOL	—	0.4	V
Output source current ¹ (dc)	IOH – Low	-5.0		mA
gpio	IOH – Medium	-9.5		mA
	IOH – High	-11.4		mA
Output sink current (dc)	IOL – Low	3.8	_	mA
gpio	IOL – Medium	7.7	_	mA
	IOL – High	9.0	_	mA
Output source current (dc)	IOH – Low	-9.2	_	mA
gpio_clk	IOH – High	-15.2		mA
Output sink current (dc)	IOL – Low	7.6	_	mA
gpio_clk	IOL – High	12.0		mA

Table 25. Digital Pin DC Characteristics for GPIO in 3.3-V Mode

Table 25.	Digital Pin	DC Characteristics	s for GPIO in 3.3-V	Mode (continued)
-----------	--------------------	---------------------------	---------------------	------------------

Parameter	Symbol	Min	Мах	Unit
10-K pull-up resistance ²	Rpu10k	8	12	kΩ
47-K pull-up resistance	Rpu47k	39	56	kΩ

¹ The conditions of the current measurements for all different drives are as follows:

IOL: at 0.4 V

IOH: at VDDIO * 0.8 V

Maximum corner for 3.3 V mode: 3.6 V, -40°C, fast process.

Minimum corner for 3.3 V mode: 3.0 V, 105°C, slow process.

8 gpio pins (LCD_D0-D7) and 2 gpio_clk pins (LCD_DOTCLK and LCD_WR_RWN) simultaneously loaded.

² See the i.MX28 reference manual for detailed pull-up configuration of each I/O.

Table 26 shows the digital pin DC characteristics for GPIO in 1.8 V mode.Table 26. Digital Pin DC Characteristics for GPIO in 1.8 V Mode

	Symbol	Min	Мах	Unit
Input voltage high (DC)	VIH	0.7 × VDDIO18	VDDIO18	V
Input voltage low (DC)	VIL	_	0.3 imes VDDIO18	V
Output voltage high (DC)	VOH	0.8 * VDDIO18	—	V
Output voltage low (DC)	VOL	_	0.2 × VDDIO18	V
Output source current ¹	IOH – Iow	-2.2	—	mA
(DC) gpio	IOH – medium	-3.5	—	mA
	IOH – high	-4.0	—	mA
Output sink current (DC)	IOL – Iow	3.3	—	mA
gpio	IOL – medium	7.0	—	mA
	IOL – high	7.5	—	mA
Output source current	IOH – Iow	-4.2	—	mA
(DC) gpio_clk	IOH – high	-6.0	—	mA
Output sink current (DC)	IOL – Iow	6.8	—	mA
gpio_clk —	IOL – high	11.5	—	mA
10-K pull-up resistance ²	Rpu10k	8	12	kΩ
47-K pull-up resistance	Rpu47k	39	56	kΩ

¹ The condition of the current measurements for all different drives are as follows:

Maximum corner for 1.8 V mode: 1.9 V, -40°C, Fast process.

Minimum corner for 1.8 V mode: 1.7 V, 105°C, Slow process.

1 gpio pin (GPMI_D0) and 1 gpio_clk pin (GPMI_WRN) simultaneously loaded.

² See the i.MX28 reference manual for detailed pull-up configuration of each I/O.

3.4 I/O AC Timing and Parameters

Figure 3 and Figure 4 show the Driver Used for AC Simulation Testpoint and the Output Pad Transition Waveform.

Driver Used for AC simulation

Figure 3. Driver Used for AC Simulation Testpoint

Output Pad Transition Waveform

Table 27 shows the base GPIO AC timing and parameters.

Parameters	Symbol	Test Voltage	Test Capacitance		in e/Fall	MaxRi	se/Fall	Unit	Notes	
Duty cycle	Fduty	—	—	-	_	-	-	%	—	
Output pad transition	tpr	1.7~1.9V	10 pF	0.82	0.91	1.93	1.97	ns	_	
times (maximum drive)	mes (maximum drive)	1.7~1.9V	20 pF	1.18	1.22	2.69	2.71		_	
			1.7~1.9V	50 pF	2.11	2.03	4.62	4.44		_
		3.0~3.6V	10 pF	1.04	1.08	2.46	2.18		—	
			3.0~3.6V	20 pF	1.42	1.5	3.29	3		—
		3.0~3.6V	50 pF	2.46	2.61	5.34	5.12		—	

Parameters	Symbol	Test Voltage	Test Capacitance		in :/Fall	MaxRi	se/Fall	Unit	Notes
Output pad transition	tpr	1.7~1.9V	10 pF	1.02	1.08	2.34	2.38	ns	
times (medium drive)		1.7~1.9V	20 pF	1.51	1.5	3.34	3.28		
		1.7~1.9V	50 pF	2.91	2.62	6.24	5.67		
		3.0~3.6V	10 pF	1.26	1.29	2.9	2.6		
		3.0~3.6V	20 pF	1.8	1.88	4	3.67		
		3.0~3.6V	50 pF	3.3	3.46	6.91	6.64		
Output pad transition	tpr	1.7~1.9V	10 pF	1.62	1.68	3.65	3.68	ns	_
times (low drive)		1.7~1.9V	20 pF	2.55	2.45	5.59	5.37		
		1.7~1.9V	50 pF	5.42	4.62	11.46	10.01		
		3.0~3.6V	10 pF	1.95	2.12	4.43	4.25		_
		3.0~3.6V	20 pF	2.96	3.21	6.36	6.25		_
		3.0~3.6V	50 pF	5.89	6.39	12.02	12.18		_
Output pad slew rate	tps	1.7~1.9V	10 pF	1.39	1.25	0.53	0.52	V/ns	—
(maximum drive)		1.7~1.9V	20 pF	0.97	0.93	0.38	0.38		_
		1.7~1.9V	50 pF	0.54	0.56	0.22	0.23		_
		3.0~3.6V	10 pF	2.08	2.00	0.73	0.83		
		3.0~3.6V	20 pF	1.52	1.44	0.55	0.60		
		3.0~3.6V	50 pF	0.88	0.83	0.34	0.35		_
Output pad slew rate	tps	1.7~1.9V	10 pF	1.12	1.06	0.44	0.43	V/ns	—
(medium drive)		1.7~1.9V	20 pF	0.75	0.76	0.31	0.31		_
		1.7~1.9V	50 pF	0.39	0.44	0.16	0.18		_
		3.0~3.6V	10 pF	1.71	1.67	0.62	0.69		_
		3.0~3.6V	20 pF	1.20	1.15	0.45	0.49		_
		3.0~3.6V	50 pF	0.65	0.62	0.26	0.27		
Output pad slew rate	tps	1.7~1.9V	10 pF	1.17	1.13	0.47	0.46	V/ns	
(low drive)		1.7~1.9V	20 pF	0.75	0.78	0.30	0.32		_
		1.7~1.9V	50 pF	0.35	0.41	0.15	0.17		—
		3.0~3.6V	10 pF	1.11	1.02	0.41	0.42		
		3.0~3.6V	20 pF	0.73	0.67	0.28	0.29		_
		3.0~3.6V	50 pF	0.37	0.34	0.15	0.15		_
Input pad average	tih	1.7 V–1.9 V	—	10	00	7	5	mV	—
hysteresis		3.0 V–3.6 V	—	1(00	5	0		

Table 27. Base GPIO (continued)

Table 28 shows the F-type GPIO AC timing and parameters.

Parameters	Symbol	Test Voltage	Test Capacitance	Min Ri	se/Fall	Max Ri	ise/Fall	Unit	Notes		
Duty cycle	Fduty	—	_	-	_	_	_	%	_		
Output pad transition	tpr	1.7~1.9V	10 pF	0.58	0.61	1.29	1.33	ns	_		
times (maximum drive)		1.7~1.9V	20 pF	0.89	0.88	1.94	1.88		_		
,		1.7~1.9V	50 pF	1.83	1.59	3.88	3.39				
		3.0~3.6V	10 pF	0.71	0.68	1.47	1.34				
		3.0~3.6V	20 pF	1.02	1.04	2.11	1.99		_		
		3.0~3.6V	50 pF	1.98	2.09	3.97	3.96		_		
Output pad transition	tpr	1.7~1.9V	10 pF	0.76	0.76	1.68	1.61	ns	_		
times (medium drive)		1.7~1.9V	20 pF	1.23	1.13	2.63	2.38		_		
		1.7~1.9V	50 pF	2.66	2.18	5.61	4.6		_		
		3.0~3.6V	10 pF	0.9	0.88	1.84	1.7		_		
		3.0~3.6V	20 pF	1.36	1.4	2.76	2.67				_
		3.0~3.6V	50 pF	2.85	3.02	5.59	5.67		_		
Output pad transition	tpr	1.7~1.9V	10 pF	1.32	1.26	2.88	2.72	ns	_		
times (low drive)		1.7~1.9V	20 pF	2.27	1.98	4.84	4.23		_		
		1.7~1.9V	50 pF	5.23	4.13	10.95	8.8		_		
		3.0~3.6V	10 pF	1.46	1.55	3.05	3		_		
		3.0~3.6V	20 pF	2.46	2.62	4.92	5.02		_		
		3.0~3.6V	50 pF	5.56	5.96	10.78	11.22		_		
Output pad slew rate	tps	1.7~1.9V	10 pF	1.97	1.87	0.79	0.77	ns	_		
(maximum drive)		1.7~1.9V	20 pF	1.28	1.30	0.53	0.54		_		
		1.7~1.9V	50 pF	0.62	0.72	0.26	0.30		_		
		3.0~3.6V	10 pF	3.04	3.18	1.22	1.34		_		
		3.0~3.6V	20 pF	2.12	2.08	0.85	0.90		_		
		3.0~3.6V	50 pF	1.09	1.03	0.45	0.45		_		
Output pad slew rate	tps	1.7~1.9V	10 pF	1.50	1.50	0.61	0.63	ns	-		
(medium drive)		1.7~1.9V	20 pF	0.93	1.01	0.39	0.43		—		
		1.7~1.9V	50 pF	0.43	0.52	0.18	0.22		—		
		3.0~3.6V	10 pF	2.40	2.45	0.98	1.06		—		
		3.0~3.6V	20 pF	1.59	1.54	0.65	0.67		—		
		3.0~3.6V	50 pF	0.76	0.72	0.32	0.32		—		

Table 28. F-type GPIO

Parameters	Symbol	Test Voltage	Test Capacitance	Min Ri	se/Fall	Max Ri	ise/Fall	Unit	Notes
Output pad slew rate	tps	1.7~1.9V	10 pF	1.44	1.51	0.59	0.63	ns	
(low drive)		1.7~1.9V	20 pF	0.84	0.96	0.35	0.40		—
		1.7~1.9V	50 pF	0.36	0.46	0.16	0.19		_
		3.0~3.6V	10 pF	1.48	1.39	0.59	0.60		
		3.0~3.6V	20 pF	0.88	0.82	0.37	0.36		_
		3.0~3.6V	50 pF	0.39	0.36	0.17	0.16		_
Input pad average	tih	1.7 V–1.9 V	—	10	00	7	5	mV	_
hysteresis		3.0 V–3.6 V	_	1(00	5	0		_

Table 28. F-type GPIO (continued)

Table 29 shows the CLK-type GPIO AC timing and parameters.

Parameters Max Rise/Fall units Symbol **Test Voltage Test Capacitance** Min Rise/Fall Notes Duty cycle Fduty ___ % ____ ____ Output pad transition tpr 1.7~1.9V 10 pF 0.48 0.52 1.08 1.12 ns ____ times (maximum 1.7~1.9V 20 pF 0.72 0.74 1.56 1.56 drive) 1.7~1.9V 50 pF 1.41 3.04 2.7 1.28 ____ 3.0~3.6V 10 pF 0.61 0.57 1.25 1.12 _ 3.0~3.6V 20 pF 0.85 0.85 1.73 1.63 ____ 3.0~3.6V 50 pF 1.56 1.63 3.13 3.08 _ Output pad transition tpr 1.7~1.9V 10 pF 0.76 0.76 1.67 1.62 ns ____ times (medium drive) 20 pF 1.7~1.9V 1.22 1.14 2.64 2.41 ____ 1.7~1.9V 50 pF 2.66 2.2 4.62 5.61 ____ 3.0~3.6V 10 pF 0.9 0.89 1.83 1.72 ____ 3.0~3.6V 20 pF 1.37 1.41 2.77 2.69 _ 3.0~3.6V 50 pF 2.85 3.03 5.59 5.72 _ Output pad slew rate tps 1.7~1.9V 10 pF 2.38 2.19 0.94 0.91 ns ____ (maximum drive) 1.7~1.9V 20 pF 1.58 1.54 0.65 0.65 ____ 1.7~1.9V 50 pF 0.81 0.34 0.38 0.89 ____ 3.0~3.6V 10 pF 3.54 3.79 1.44 1.61 ____ 3.0~3.6V 20 pF 2.54 2.54 1.04 1.10 _ 50 pF 3.0~3.6V 1.38 1.33 0.58 0.58 _

Table 29. CLK-Type GPIO

Parameters	Symbol	Test Voltage	Test Capacitance	Min Ri	se/Fall	Max R	ise/Fall	units	Notes
Output pad slew rate	tps	1.7~1.9V	10 pF	1.50	1.50	0.61	0.63	ns	—
(medium drive)		1.7~1.9V	20 pF	0.93	1.00	0.39	0.42		—
		1.7~1.9V	50 pF	0.43	0.52	0.18	0.22		—
		3.0~3.6V	10 pF	2.40	2.43	0.98	1.05		—
		3.0~3.6V	20 pF	1.58	1.53	0.65	0.67		—
		3.0~3.6V	50 pF	0.76	0.71	0.32	0.31		—
Input pad average	tih	1.7 V–1.9 V	—	1(00	7	5	mV	—
hysteresis		3.0 V–3.6 V	_	1(00	5	0		

Table 29. CLK-Type GPIO (continued)

3.5 Module Timing and Electrical Parameters

3.5.1 ADC Electrical Specifications

This section describes the electrical specifications, including DC and AC information, of Low-Resolution ADC (LRADC) and High-Speed ADC (HSADC).

3.5.1.1 LRADC Electrical Specifications

Table 30 shows the electrical specifications for the LRADC.

Table 30. LRADC Electrical Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
	AC Electrical Specification				•
Input capacitance (<i>C_p</i>)	No pin/pad capacitance included	—	0.5	—	pF
Resolution	_		12		bits
Maximum sampling rate ¹ (fs)	_	—	—	428	kHz
Power-up time ²	_		1		sample cycles
	DC Electrical Specification				J
DC input voltage		0		1.85	V
Current consumption ³ VDDA	_	_	10	_	μA
	Touchscreen Interface	1	1	I	1
Expected plate resistance	_	200	_	50000	Ω

¹ There is no sample and hold circuit in LRADC, so it is only for DC input voltage or ones with very small slope.

² This comprises only the required initial dummy conversion cycle, NOT including the Analog part power-up time.

³ This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the touchscreen plate. For example, if the plate resistance is 200 ohm, the total current consumption is about 11 mA.

3.5.1.2 HSADC Electrical Specification

Table 31 shows the electrical specifications for the HSADC

Table 31. HSADC Electrical Specification

Parameter	Conditions	Min.	Тур.	Max.	Unit		
AC Electrical Specification							
Input sampling capacitance (C _s)	No pin/pad capacitance included	_	0.5	—	pF		
Resolution	-		12		bits		
Maximum sampling rate (fs)	_	_	—	2	MHz		
Power-up time	_		1	•	sample cycles		
	DC Electrical Specification						
DC input voltage	—	0.5	—	VDDA-0.5	V		
Current Consumption VDDA	_	_	10	_	μA		
DNL	fin = 1 kHz	—	0.5	1.2	LSB		
INL	fin = 1kHz	—	0.5	1.2	LSB		

3.5.2 DPLL Electrical Specifications

This section includes descriptions of the USB PLL electrical specifications and Ethernet PLL electrical specifications.

3.5.2.1 USB PLL Electrical Specifications

The i.MX28 integrates a high-frequency USB PLL that provides the 480-MHz clock for the USB and other system blocks.

Table 32 lists the USB PLL output electrical specifications.

Table 32. USB PLL Specifications

Parameter	Test Conditions	Min	Тур	Мах	Unit
PLL lock time				10	μs

3.5.2.2 Ethernet PLL Electrical Specifications

i.MX28 provides a 50-MHz/25-MHz output clock, called the Ethernet PLL output.

Table 33 lists the Ethernet PLL output electrical specifications.

Table 33. Ethernet PLL Specifications

Parameter	Test Conditions	Min	Тур	Мах	Unit
Output Duty Cycle	_	45	50	55	%
PLL lock time	_	_	—	10	μs
Cycle to cycle jitter	_	_	25	_	ps
Clock output frequency tolerance ¹	—	—	—	+/-20	ppm

¹ This Ethernet output clock tolerance specification is the contribution from the PLL only and assumes a perfect 24 MHz clock/crystal source with 0 ppm deviation. The 24 MHz crystal frequency tolerance/deviation should be added to this number for the total Ethernet clock output frequency tolerance.

3.5.3 EMI AC Timing

This section includes descriptions of the electrical specifications of EMI module which interfaces external DDR2 and Mobile-DDR1 (LP-DDR1) memory devices.

3.5.3.1 EMI Command and Address AC Timing

Figure 5 and Table 34 specify the timing related to the address and command pins that interfaces DDR2 and Mobile-DDR1 memory devices.

Figure 5. EMI Command/Address AC Timing

ID	Description	Symbol	Min.	Max.	Unit
DDR1	CK cycle time	tCK	4.86	_	ns
DDR2	CK high level width	tCH	0.5 tCK -0.5	0.5 tCK + 0.5	ns
DDR3	CK low level width	tCL	0.5 tCK -0.5	0.5 tCK + 0.5	ns

ID	Description	Symbol	Min.	Max.	Unit
DDR4	Address and control output setup time	tIS	0.5 tCK – 1	0.5 tCK + 0.5	ns
DDR5	Address and control output hold time	tIH	0.5 tCK – 1	0.5 tCK + 0.5	ns

Table 34. EMI Command/Address AC Timing (continued)

3.5.3.2 DDR Output AC Timing

Figure 6 and Table 35 show the DDR output AC timing defined for all DDR types: LPDDR1, standard DDR2 (1.8 V), and LVDDR2 (1.5 V)

Figure 6. DDR Output AC Timing

ID	Description	Symbol	Min	Мах	Unit
DDR10	Positive DQS latching edge to associated CK edge	tDQSS	-0.5	0.5	ns
DDR11	DQS falling edge from CK rising edge—hold time	tDSH	0.5 tCK -0.5	0.5 tCK + 0.5	ns
DDR12	DQS falling edge to CK rising edge—setup time	tDSS	0.5 tCK -0.5	0.5 tCK + 0.5	ns
DDR13	DQS output high pulse width	tDQSH	0.5 tCK -0.5	0.5 tCK + 0.5	ns
DDR14	DQS output low pulse width	tDQSL	0.5 tCK -0.5	0.5 tCK + 0.5	ns

ID	Description	Symbol	Min	Max	Unit
DDR15	DQ & DQM output setup time relative to DQS	tDS	1/4 tCK –0.8	1/4 tCK –0.5	ns
DDR16	DQ & DQM output hold time relative to DQS	tDH	1/4 tCK –0.8	1/4 tCK -0.5	ns

Table 35. DDR Output AC Timing (continued)

3.5.3.3 DDR2 Input AC Timing

Figure 7 and Table 36 show input AC timing for standard DDR2 and LVDDR2.

Figure 7. DDR2 Input AC Timing

Table 36. DDR2 Input AC Timing

ID	Description	Symbol	Min	Мах	Unit
DDR20	Positive DQS latching edge to associated CK edge	tDQSCK	-0.5	0.5	ns
DDR21	DQS to DQ input skew	tDQSQ	0.25 tCK -0.85	0.25 tCK -0.5	ns
DDR22	DQS to DQ input hold time	tQH	0.25 tCK +0.75	0.25 tCK + 1	ns

3.5.3.4 LPDDR1 Input AC Timing

Figure 8 and Table 37 show input AC timing for LPDDR1.

Figure 8. LPDDR1 Input AC Timing

Table 37. DDR2 Input AC Timing

ID	Description	Symbol	Min	Мах	Unit
DDR20	Positive DQS latching edge to associated CK edge	tDQSCK	2	6	ns
DDR21	DQS to DQ input skew	tDQSQ	0.25 tCK -0.85	0.25 tCK -0.5	ns
DDR22	DQS to DQ input hold time	tQH	0.25 tCK +0.75	0.25 tCK + 1	ns

3.5.4 Ethernet MAC Controller (ENET) Timing

The ENET is designed to support both 10- and 100-Mbps Ethernet networks compliant with IEEE 802.3. An external transceiver interface and transceiver function are required to complete the interface to the media. The ENET supports 10/100-Mbps MII (18 pins altogether), 10/100-Mbps RMII (10 pins, including serial management interface), for connection to an external Ethernet transceiver. All signals are compatible with transceivers operating at a voltage of 3.3 V.

The following subsections describe the timing for MII and RMII modes.

3.5.4.1 ENET MII Mode Timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

3.5.4.1.1 MII Receive Signal Timing (ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER, and ENET0_RX_CLK)

The receiver functions correctly up to an ENET0_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET0_RX_CLK frequency.

Figure 9 shows MII receive signal timings. Table 38 describes the timing parameters (M1–M4) shown in the figure.

Figure 9. MII Receive Signal Timing Diagram

ID	Characteristic ¹	Min.	Max.	Unit
M1	ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER to ENET0_RX_CLK setup	5	_	ns
M2	ENET0_RX_CLK to ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER hold	5	_	ns
M3	ENET0_RX_CLK pulse width high	35%	65%	ENET0_RX_CLK period
M4	ENET0_RX_CLK pulse width low	35%	65%	ENET0_RX_CLK period

¹ ENET0_RX_DV, ENET0_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

3.5.4.1.2 MII Transmit Signal Timing (ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER, and ENET0_TX_CLK)

The transmitter functions correctly up to an ENET0_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET0_TX_CLK frequency.

Figure 10 shows MII transmit signal timings. Table 39 describes the timing parameters (M5–M8) shown in the figure.

Figure 10. MII Transmit Signal Timing Diagram

Table 39. MII Transmit Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
M5	ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER invalid	5	—	ns
M6	ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER valid	_	20	ns
M7	ENET0_TX_CLK pulse width high	35%	65%	ENET0_TX_CLK period
M8	ENET0_TX_CLK pulse width low	35%	65%	ENET0_TX_CLK period

¹ ENET0_TX_EN, ENET0_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

3.5.4.1.3 MII Asynchronous Inputs Signal Timing (ENET0_CRS and ENET0_COL)

Figure 11 shows MII asynchronous input timings. Table 40 describes the timing parameter (M9) shown in the figure.

Figure 11. MII Async Inputs Timing Diagram

Table 40. MII Asynchronous Inputs Signal Timing

ID	Characteristic	Min.	Max.	Unit
M9 ¹	ENET0_CRS to ENET0_COL minimum pulse width	1.5		ENET0_TX_CLK period

¹ ENET0_COL has the same timing in 10-Mbit 7-wire interface mode.

3.5.4.1.4 MII Serial Management Channel Timing (ENET0_MDIO and ENET0_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 12 shows MII asynchronous input timings. Table 41 describes the timing parameters (M10–M15) shown in the figure.

Figure 12. MII Serial Management Channel Timing Diagram

Table 41. MII Serial Management Channel Timing

ID	Characteristic	Min.	Max.	Unit
M10	ENET0_MDC falling edge to ENET0_MDIO output invalid (min. propagation delay)	0	_	ns
M11	ENET0_MDC falling edge to ENET0_MDIO output valid (max. propagation delay)	_	5	ns
M12	ENET0_MDIO (input) to ENET0_MDC rising edge setup	18		ns
M13	ENET0_MDIO (input) to ENET0_MDC rising edge hold	0		ns
M14	ENET0_MDC pulse width high	40%	60%	ENET0_MDC period
M15	ENET0_MDC pulse width low	40%	60%	ENET0_MDC period

3.5.4.2 RMII Mode Timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET0_RX_DV is used as the CRS_DV in RMII. Other signals under RMII mode include ENET0_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET0_RX_ER.

Figure 13 shows RMII mode timings. Table 42 describes the timing parameters (M16–M21) shown in the figure.

Figure 13. RMII Mode Signal Timing Diagram

Table 42. RMII Signal Timing

ID	Characteristic	Min.	Max.	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN invalid	3	—	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN valid	—	12	ns
M20	ENET0_RXD[1:0], CRS_DV(ENET0_RX_DV), ENET0_RX_ER to ENET_CLK setup	2	_	ns
M21	ENET_CLK to ENET0_RXD[1:0], ENET0_RX_DV, ENET0_RX_ER hold	2	—	ns

3.5.5 Coresight ETM9 AC Interface Timing

The following timing specifications are given as a guide for a TPA that supports TRACECLK (ETM_TCLK) frequencies up to 80 MHz. TRACECLK is the ETM_TCLK signal which can be made functional by using some IOMUX configurations. See the reference manual for detailed information.

3.5.5.1 TRACECLK Timing

This section describes TRACECLK timings.

Figure 14 shows TRACECLK signal timings. Table 43 describes the timing parameters shown in the figure.

Figure 14. TRACECLK Signal Timing Diagram

Table 43. TRACECLK Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
Tr	Clock and data raise time	3		ns
Tf	Clock and data fall time	3	_	ns
Twh	High pulse wide	2	_	ns
Twl	Low pulse wide	2	_	ns
Тсус	Clock period	12.5	_	ns

3.5.5.2 Trace Data Signal Timing

Figure 15 shows the setup and hold requirements of the trace data pins with respect to TRACECLK. Table 44 describes the timing parameters shown in the figure.

Figure 15. Trace Data Signal Timing Diagram

Table 44.	Trace	Data	Signal	Timing
-----------	-------	------	--------	--------

ID	Characteristic ¹	Min.	Max.	Unit
Ts	Data setup	2	_	ns
Th	Data hold	2	_	ns

3.5.6 FlexCAN AC Timing

Table 45 and Table 46 show voltage requirements for the FlexCAN transceiver Tx and Rx pins.

Table 45. Tx Pin Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
High-level output voltage	Voн	2	_	Vcc ¹ + 0.3	V
Low-level output voltage	Vol		0.8	—	V

¹ Vcc = $+3.3 V \pm 5\%$

Table 46. Rx Pin Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
High-level input voltage	Vih	$0.8 imes Vcc^1$	_	Vcc ¹	V
Low-level input voltage	VIL	—	0.4	—	V

¹ Vcc = +3.3 V \pm 5%

Figure 16 through Figure 19 show the FlexCAN timing, including timing of the standby and shutdown signals.

Figure 16. FlexCAN Timing Diagram

Figure 19. Timing Diagram for FlexCAN Shutdown-to-Standby Signal

3.5.7 General-Purpose Media Interface (GPMI) Timing

The i.MX28 GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 50MB/s I/O speed and individual chip select.

It supports normal timing mode, using two Flash clock cycles for one access of \overline{RE} and \overline{WE} . AC timings are provided as multiplications of the clock cycle and fixed delay. Figure 20, Figure 21, Figure 22 and Figure 23 depict the relative timing between GPMI signals at the module level for different operations under normal mode. Table 47 describes the timing parameters (NF1–NF17) that are shown in the figures.

Figure 22. Write Data Latch Cycle Timing Diagram

Figure 23. Read Data Latch Cycle Timing Diagram

ID	Parameter	Symbol		Timing T = GPMI Clock Cycle		Fiming for ≈ 100 MHz	Unit
			Min.	Max.	Min.	Max.	
NF1	CLE setup time	tCLS	(AS+1)*T	_	10	—	ns
NF2	CLE hold time	tCLH	(DH+1)*T	_	20	—	ns
NF3	CEn setup time	tCS	(AS+1)*T	_	10	—	ns
NF4	CE hold time	tCH	(DH+1)*T	_	20	—	ns
NF5	WE pulse width	tWP	DS	*T	10		ns
NF6	ALE setup time	tALS	(AS+1)*T	—	10	—	ns
NF7	ALE hold time	tALH	(DH+1)*T	_	20	—	ns
NF8	Data setup time	tDS	DS*T	_	10	—	ns
NF9	Data hold time	tDH	DH*T	_	10	—	ns
NF10	Write cycle time	tWC	(DS+[DH)*T	2	0	ns
NF11	WE hold time	tWH	DH	DH*T		0	ns
NF12	Ready to RE low	tRR	(AS+1)*T	_	10	—	ns
NF13	RE pulse width	tRP	DS*T	_	10	—	ns
NF14	READ cycle time	tRC	(DS+DH)*T	_	20	—	ns
NF15	RE high hold time	tREH	DH*T		10	—	ns
NF16	Data setup on read	tDSR	N/A		10	—	ns
NF17	Data hold on read	tDHR	N/	A	10	_	ns

¹ The Flash clock maximum frequency is 100 MHz.

2)GPMI's output timing could be controlled by module's internal register, say

HW_GPMI_TIMING0_ADDRESS_SETUP,HW_GPMI_TIMING0_DATA_SETUP,HW_GPMI_TIMING0_DATA_HOLD, this AC timing depends on these registers' setting. In the above table we use AS/DS/DH representing these settings each.

3)AS minimum value could be 0, while DS/DH minimum value is 1.

3.5.8 LCD AC Output Electrical Specifications

Figure 24 depicts the AC output timing for the LCD module. Table 48 lists the LCD module timing parameters.

Notes:

T = LCD interface clock period I/O Drive Strength = 4mA I/O Voltage = 3.3V Cck = Capacitance load on DOTCK pad Cd = Capacitance load on DATA/CTRL pad

Table 48. LCD AC Output Timing Parameters

ID	Parameter	Description
tSF	Data setup for falling edge	DOTCK = T/2 - 1.97ns + 0.15*Cck - 0.19*Cd
tHF	Data hold for falling edge	DOTCK = T/2 + 0.29ns + 0.09*Cd - 0.10*Cck
tSR	Data setup for rising edge	DOTCK = T/2 - 2.09ns + 0.18*Cck - 0.19*Cd
tHR	Data hold for rising edge	DOTCK = T/2 + 0.40ns + 0.09*Cd - 0.10*Cck
tDW	Data valid window	tDW = T – 1.45ns

3.5.9 Inter IC (I²C) Timing

The I²C module is designed to support up to 400-Kbps I²C connection compliant with I²C bus protocol. The following section describes I²C SDA and SCL signal timings.

Figure 25 shows the timing of the I^2C module. Table 49 describes the I^2C module timing parameters (IC1–IC11) shown in the figure.

Figure 25. I²C Module Timing Diagram

ID	Parameter	Standar	d Mode	Fast Mode		Unit
			Max.	Min.	Max.	Onit
IC1	I2C_SCL cycle time	10	—	2.5	—	μs
IC2	Hold time (repeated) START condition	4.0	—	0.6	—	μs
IC3	Set-up time for STOP condition	4.0	—	0.6		μs
IC4	Data hold time	0 ¹	3.45 ²	01	0.9 ²	μs
IC5	HIGH Period of I2C_SCL clock	4.0	_	0.6	—	μs
IC6	LOW Period of the I2C_SCL clock	4.7	—	1.3	—	μs
IC7	Set-up time for a repeated START condition	4.7	—	0.6	—	μs
IC8	Data set-up time	250	—	100 ³	_	ns
IC9	Bus free time between a STOP and START condition	4.7	—	1.3	—	μs
IC10	Rise time of both I2C_SDA and I2C_SCL signals	—	1000	20+0.1C _b ⁴	300	ns
IC11	Fall time of both I2C_SDA and I2C_SCL signals	_	300	20+0.1C _b ⁴	300	ns
IC12	Capacitive load for each bus line (C _b)	—	400	—	400	pF

Table 49. I²C Module Timing Parameters: 1.8 V – 3.6 V

¹ A device must internally provide a hold time of at least 300 ns for the I2C_SDA signal in order to bridge the undefined region of the falling edge of I2C_SCL.

² The maximum IC4 has to be met only if the device does not stretch the LOW period (ID no IC5) of the I2C_SCL signal.

³ A fast-mode I2C bus device can be used in a standard-mode I²C bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line max_rise_time (ID No IC9) + data_setup_time (ID No IC7) = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the I2C_SCL line is released.

⁴ C_b = total capacitance of one bus line in pF.

3.5.10 JTAG Interface Timing

Figure 26 through Figure 29 show respectively the test clock input, boundary scan, test access port, and TRST timings for the SJC. Table 50 describes the SJC timing parameters (SJ1–SJ13) indicated in the figures.

Figure 27. Boundary Scan (JTAG) Timing Diagram

ID	Parameter	All Freq	Unit	
		Min.	Max.	Unit
SJ1	TCK cycle time	100	_	ns
SJ2	TCK clock pulse width measured at V _M ¹	40	_	ns
SJ3	TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	10	_	ns
SJ5	Boundary scan input data hold time	50	_	ns
SJ6	TCK low to output data valid	—	50	ns
SJ7	TCK low to output high impedance	—	50	ns
SJ8	TMS, TDI data set-up time	10	—	ns
SJ9	TMS, TDI data hold time	50	—	ns

ID	Parameter	All Freq	All Frequencies	
	Falameter	Min.	Max.	Unit
SJ10	TCK low to TDO data valid	_	44	ns
SJ11	TCK low to TDO high impedance	—	44	ns
SJ12	TRST assert time	100	—	ns
SJ13	TRST set-up time to TCK low	40	_	ns

Table 50. SJC Timing Parameters (continued)

¹ V_{M-} mid point voltage

3.5.11 Pulse Width Modulator (PWM) Timing

Figure 30 depicts the timing of the PWM, and Table 51 lists the PWM timing characteristics.

The PWM can be programmed to select one of two clock signals as its source frequency: xtal clock or hsadc clock. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse width modulator output (PWMO) external pin.

PWM also supports MATT mode. In this mode, it can be programmed to select one of two clock signals as its source frequency, 24-MHz or 32-kHz crystal clock. For a 32-kHz source clock input, the PWM outputs the 32-kHz clock directly to PAD.

Figure 30. PWM Timing

Ref No.	Parameter	Minimum	Maximum	Unit
1	System CLK frequency ¹	0	24MHz	MHz
2a	Clock high time	21	_	ns
2b	Clock low time	21	_	ns
3a	Clock fall time	—	0.3	ns
3b	Clock rise time	—	0.3	ns
4a	Output delay time	—	15.08	ns
4b	Output setup time	15.77	_	ns

¹ CL of PWMO = 30 pF

Figure 31. PWM Timing

Table 52. PWM Output Timing Parameter: HSADC clock

Ref No.	Parameter	Minimum	Maximum	Unit
1	System CLK frequency ¹	0	32	MHz
2a	Clock high time	6.813	_	ns
2b	Clock low time	24.432	_	ns
3a	Clock fall time	—	0.3	ns
3b	Clock rise time	—	0.3	ns
4a	Output delay time	—	14.93	ns
4b	Output setup time	15.71	_	ns

¹ CL of PWMO = 30 pF

Figure 32. PWM Timing

Ref No.	Parameter	Minimum	Maximum	Unit
1	System CLK frequency ¹	24	24	MHz
2a	Clock high time	20.99	_	ns
2b	Clock low time	21.01	_	ns
3a	Clock fall time	_	0.3	ns
3b	Clock rise time	—	0.3	ns
4a	Output delay time	—	15.23	ns
4b	Output setup time	15.92	_	ns

 Table 53. PWM Output Timing Parameter: MATT Mode 24 MHz Crystal Clock

¹ CL of PWMO = 30 pF

3.5.12 Serial Audio Interface (SAIF) AC Timing

The following subsections describe SAIF timing in two cases:

- Transmitter
- Receiver

3.5.12.1 SAIF Transmitter Timing

Figure 33 shows the timing for SAIF transmitter with internal clock, and Table 54 describes the timing parameters (SS1–SS13).

Figure 33. SAIF Transmitter Timing Diagram

ID	Parameter	Min.	Max.	Unit
SS1	BITCLK period	81.4	_	ns
SS2	BITCLK high period	36.0	_	ns
SS3	BITCLK rise time	—	6.0	ns
SS4	BITCLK low period	36.0	_	ns
SS5	BITCLK fall time	—	6.0	ns
SS6	BITCLK high to LRCLK high	—	15.0	ns
SS7	BITCLK high to LRCLK low	_	15.0	ns
SS8	LRCLK rise time	—	6.0	ns
SS9	LRCLK fall time	—	6.0	ns
SS10	BITCLK high to SDATA valid from high impedance	—	15.0	ns
SS11	BITCLK high to SDATA high/low	—	15.0	ns
SS12	BITCLK high to SDATA high impedance	—	15.0	ns
SS13	SDATA rise/fall time	—	6.0	ns

Table 54. SAIF Transmitter Timing

3.5.12.2 SAIF Receiver Timing

Figure 34 shows the timing for the SAIF receiver with internal clock. Table 55 describes the timing parameters (SS1–SS17) shown in the figure.

Figure 34. SAIF Receiver Timing Diagram

ID	Parameter	Min.	Max.	Unit
SS1	BITCLK period	81.4	_	ns
SS2	BITCLK high period	36.0	_	ns
SS3	BITCLK rise time	—	6.0	ns
SS4	BITCLK low period	36.0	_	ns
SS5	BITCLK fall time	—	6.0	ns
SS14	BITCLK high to LRCLK high	—	15.0	ns
SS15	BITCLK high to LRCLK low	—	15.0	ns
SS16	SDATA setup time before BITCLK high	10.0	_	ns
SS17	SDATA hold time after BITCLK high	0.0	_	ns

Table 55. SAIF Receiver Timing with Internal Clock

3.5.13 SPDIF AC Timing

SPDIF data is sent using bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

The following Table 56 shows SPDIF timing parameters, including the timing of the modulating Tx clock (spdif_clk) in SPDIF transmitter as shown in the Figure 35.

Ohavaatariistiaa	Cumhal	Timing Para	meter Range	Unit
Characteristics	Symbol _	Min	Max	_ Unit
 SPDIFOUT output (Load = 30pf) Skew Transition Rising Transition Falling 			1.5 13.6 18.0	ns
Modulating Tx clock (spdif_clk) period	spclkp	81.4	—	ns
spdif_clk high period	spclkph	65.1	—	ns
spdif_clk low period	spclkpl	65.1	—	ns

Table 56. SPDIF Timing

Figure 35. spdif_clk Timing

3.5.14 Synchronous Serial Port (SSP) AC Timing

This section describes the electrical information of the SSP, which includes SD/MMC4.3 (Single Data Rate) timing, MMC4.4 (Dual Date Rate) timing, MS (Memory Stick) timing, and SPI timing.

3.5.14.1 SD/MMC4.3 (Single Data Rate) AC Timing

Figure 36 depicts the timing of SD/MMC4.3, and Table 57 lists the SD/MMC4.3 timing characteristics.

Figure 36. SD/MMC4.3 Timing

ID	Parameter	Symbols	Min	Max	Unit
Card Inp	but Clock			1	1
SD1	Clock Frequency (Low Speed)	f _{PP} 1	0	400	kHz
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz
	Clock Frequency (MMC Full Speed/High Speed)	f _{₽₽} ³	0	20/52	MHz
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz
SD2	Clock Low Time	t _{WL}	7	_	ns
SD3	Clock High Time	t _{WH}	7	_	ns
SD4	Clock Rise Time	t _{TLH}	—	3	ns
SD5	Clock Fall Time	t _{THL}	—	3	ns
SSP Out	tput / Card Inputs CMD, DAT (Reference to CLK)				•
SD6	SSP Output Delay	t _{OD}	-5	5	ns

ID	Parameter	Symbols	Min	Мах	Unit
SD7	SSP Input Setup Time	t _{ISU}	2.5		ns
SD8	SSP Input Hold Time	t _{IH} ⁴	2.5	—	ns

Table 57. SD/MMC4.3 Interface Timing Specification (continued)	Table 57.	SD/MMC4.3	Interface	Timing §	Specification ((continued)
--	-----------	-----------	-----------	----------	-----------------	-------------

¹ In low speed mode, the card clock must be lower than 400 kHz, and the voltage ranges from 2.7 to 3.6 V.

² In normal speed mode for the SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz. In high speed mode, clock frequency can be any value between 0 ~ 50 MHz.

³ In normal speed mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz. In high speed mode, clock frequency can be any value between 0 ~ 52MHz.

⁴ To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2ns.

3.5.14.2 MMC4.4 (Dual Data Rate) AC Timing

Figure 37 depicts the timing of MMC4.4, and Table 58 lists the MMC4.4 timing characteristics. Be aware that only DATA0–DATA7 are sampled on both edges of the clock (not applicable to CMD).

Figure 37. MMC4.4 Timing

Table 58.	MMC4.4	Interface	Timing	Specification
-----------	--------	-----------	--------	---------------

ID	Parameter	Symbols	Min	Мах	Unit
Card Input Clock					
SD1	Clock Frequency (MMC Full Speed/High Speed)	f _{PP}	0	52	MHz
SSP Output / Card Inputs CMD, DAT (Reference to CLK)					
SD2	SSP Output Delay	t _{OD}	-5	5	ns
SSP Input / Card Outputs CMD, DAT (Reference to CLK)					
SD3	SSP Input Setup Time	t _{ISU}	2.5	_	ns
SD4	SSP Input Hold Time	t _{IH}	2.5	_	ns

3.5.14.3 MS (Memory Stick) AC Timing

The SSP module, which also has the function of a memory stick host controller, is compatible with the Sony Memory Stick version 1.x and Memory Stick PRO.

Figure 38, Figure 39 and Table 40 show the timing of the Memory Stick. Table 59 and Table 60 list the Memory Stick timing characteristics.

Figure 38. MS Clock Time Waveforms

Figure 39. MS Serial Transfer Mode Timing Diagram

Figure 40. MS Parallel Transfer Mode Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
MS1	SCK Cycle Time	tCLKc	50	—	ns
MS2	SCK High Pulse Time	tCLKwh	15	—	ns
MS3	SCK Low Pulse Time	tCLKwl	15	—	ns
MS4	SCK Rise Time	tCLKr	_	10	ns
MS5	SCK Fall Time	tCLKf	_	10	ns
MS6	BS Setup Time	tBSsu	5	—	ns
MS7	BS Hold Time	tBSh	5	—	ns
MS8	DATA Setup Time	tDsu	5	—	ns
MS9	DATA Hold Time	tDh	5	—	ns
MS10	DATA Input Delay Time	tDd	—	15	ns

Table 59. MS Serial Transfer Timing Parameters

Table 60. MS Parallel Transfer Timing Parameters

ID	Parameter	Symbol	Min	Max	Unit
MS1	SCK Cycle Time	tCLKc	25	_	ns
MS2	SCK High Pulse Time	tCLKwh	5	_	ns
MS3	SCK Low Pulse Time	tCLKwl	5	_	ns
MS4	SCK Rise Time	tCLKr	_	10	ns

ID	Parameter	Symbol	Min	Max	Unit
MS5	SCK Fall Time	tCLKf	_	10	ns
MS11	BS Setup Time	tBSsu	8	_	ns
MS12	BS Hold Time	tBSh	1	_	ns
MS13	DATA Setup Time	tDsu	8	_	ns
MS14	DATA Hold Time	tDh	1	_	ns
MS15	DATA Input Delay Time	tDd	_	15	ns

Table 60. MS Parallel Transfer Timing Parameters (continued)

3.5.14.4 SPI AC Timing

Figure 41 depicts the master mode and slave mode timings of the SPI, and Table 61 lists the timing parameters.

Figure 41. SPI Interface Timing Diagram

Table 61. SPI Interface Timing Parameters

ID	Parameter	Symbol	Min.	Max.	Unit
CS1	SCK cycle time	t _{clk}	50	—	ns
CS2	SCK high or low time	t _{SW}	25	—	ns
CS3	SCK rise or fall	t _{RISE/FALL}	—	7.6	ns
CS4	SSn pulse width	t _{CSLH}	25	—	ns
CS5	SSn lead time (CS setup time)	t _{SCS}	25	—	ns
CS6	SSn lag time (CS hold time)	t _{HCS}	25	—	ns
CS7	MOSI setup time	t _{Smosi}	5	—	ns
CS8	MOSI hold time	t _{Hmosi}	5	—	ns
CS9	MISO setup time	t _{Smiso}	5	_	ns
CS10	MISO hold time	t _{Hmiso}	5		ns

3.5.15 UART (UARTAPP and DebugUART) AC Timing

This section describes the UART module AC timing which is applicable to both UARTAPP and DebugUART.

3.5.15.1 UART Transmit Timing

Figure 39 shows the UART transmit timing, showing only eight data bits and one stop bit. Table 62 describes the timing parameter (UA1) shown in the figure.

Figure 42. UART Transmit Timing Diagram

Table 62. UART Transmit Timing Parameters

ID	Parameter	Symbol	Min.	Max.	Unit
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} 1 - T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	_

F_{baud_rate}: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of DebugUART is 115.2 kbps.

² $T_{ref clk}$: The period of UART reference clock *ref_clk* (which is APBX clock = 24 MHz).

3.5.15.2 UART Receive Timing

Figure 43 shows the UART receive timing, showing only eight data bits and one stop bit. Table 63 describes the timing parameter (UA2) shown in the figure.

Figure 43. UART Receive Timing Diagram

ID	Parameter	Symbol	Min.	Max.	Unit
UA2	Receive bit time ¹	t _{Rbit}	$1/F_{baud_rate}^2 - 1/(16 \times F_{baud_rate})$	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	—

Table 63. UART Receive Timing Parameters

¹ The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud_rate}: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of DebugUART is 115 kbps.

4 Package Information and Contact Assignments

4.1 Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch

The following notes apply to Figure 44:

- All dimensions are in millimeters.
- Dimensioning and tolerancing per ASME Y14.5M-1994.
- Maximum solder bump diameter measured parallel to datum A.
- Datum A, the seating plane, is determined by the spherical crowns of the solder bumps.
- Parallelism measurement excludes any effect of mark on top surface of package.

Figure 44 shows the i.MX28 production package.

4.2 Ground, Power, Sense, and Reference Contact Assignments

Table 64 shows power and ground contact assignments for the MAPBGA package.

Contact Name	Contact Assignment
VDDA1	C13
VDDD	G12,G11,F10,F11,K12,F12,G10
VDDIO18	G8,F9,F8,G9
VDDIO33	H8,J8,N3,G3,E6,J9,J10,A7,E16
VDDIO33_EMI	N17
VDDIO_EMI	P11,R13,N13,N15,G17,M12,M10,G13,M11,L13,G15

Table 64. MAPBGA Power and Ground Contact Assignments

Contact Name	Contact Assignment
VDDIO_EMIQ	K15,J13,R15
VDDXTAL	C12
VSS	E15,L11,A1,K10,K11,J11,M14,H11,U1,H9,H12,H3,K9,C16,L10,H16,J12,H10,B7,E5,J15,A9,N4
VSSA1	B13
VSSA2	B11
VSSIO_EMI	F16,R10,H14,M16,F14,L12,P16,U17,T14,P14,R12

Table 64. MAPBGA Power and Ground Contact Assignments (continued)

4.3 Signal Contact Assignments

Table 65 lists the i.MX287 MAPBGA package signal contact assignments.

Table 65. i.MX287 MAPBGA Cont	act Assignments
-------------------------------	-----------------

Signal Name	Contact Assignment	Si
AUART0_CTS	J6	EMI
AUART0_RTS	J7	EMI_
AUART0_RX	G5	EMI
AUART0_TX	H5	EMI
AUART1_CTS	К5	EMI
AUART1_RTS	J5	EMI_
AUART1_RX	L4	EMI_
AUART1_TX	К4	ENE
AUART2_CTS	H6	ENE
AUART2_RTS	H7	ENE
AUART2_RX	F6	ENE
AUART2_TX	F5	ENE
AUART3_CTS	L6	ENE
AUART3_RTS	К6	ENE
AUART3_RX	M5	ENE
AUART3_TX	L5	ENE
BATTERY	A15	ENE
DCDC_BATT	B15	ENE
DCDC_GND	A17	ENE
DCDC_LN1	B17	ENE
DCDC_LP	A16	ENE

Signal Name	Contact Assignment
EMI_DQS1N	J16
EMI_ODT0	R17
EMI_ODT1	T17
EMI_RASN	R16
EMI_VREF0	R14
EMI_VREF1	К13
EMI_WEN	T15
ENET0_COL	J4
ENET0_CRS	J3
ENET0_MDC	G4
ENET0_MDIO	H4
ENET0_RXD0	H1
ENET0_RXD1	H2
ENET0_RXD2	J1
ENET0_RXD3	J2
ENET0_RX_CLK	F3
ENET0_RX_EN	E4
ENET0_TXD0	F1
ENET0_TXD1	F2
ENET0_TXD2	G1
ENET0_TXD3	G2

Signal Name	Contact Assignment
LCD_D17	B3
LCD_D18	U4
LCD_D19	T4
LCD D20	B4
LCD_D21	U5
LCD_D22	Т5
LCD_D23	R5
LCD_DOTCLK	N1
LCD_ENABLE	N5
LCD_HSYNC	M1
LCD_RD_E	P4
LCD_RESET	M6
LCD_RS	M4
LCD_VSYNC	L1
LCD_WR_RWN	K1
LRADC0	C15
LRADC1	C9
LRADC2	C8
LRADC3	D9
LRADC4	D13
LRADC5	D15

Signal Name	Contact Assignment
DCDC_VDDA	B16
DCDC_VDDD	D17
DCDC_VDDIO	C17
DEBUG	В9
EMI_A00	U15
EMI_A01	U12
EMI_A02	U14
EMI_A03	T11
EMI_A04	U10
EMI_A05	R11
EMI_A06	R9
EMI_A07	N11
EMI_A08	U9
EMI_A09	P10
EMI_A10	U13
EMI_A11	T10
EMI_A12	U11
EMI_A13	Т9
EMI_A14	N10
EMI_BA0	Т16
EMI_BA1	T12
EMI_BA2	N12
EMI_CASN	U16
EMI_CE0N	P12
EMI_CE1N	P9
EMI_CKE	Т13
EMI_CLK	L17
EMI_CLKN	L16
EMI_D00	N16
EMI_D01	M13
EMI_D02	P15
EMI_D03	N14

Signal Name	Contact Assignment
ENET0_TX_CLK	E3
ENET0_TX_EN	F4
ENET_CLK	E2
GPMI_ALE	P6
GPMI_CE0N	N7
GPMI_CE1N	N9
GPMI_CE2N	M7
GPMI_CE3N	М9
GPMI_CLE	P7
GPMI_D00	U8
GPMI_D01	Т8
GPMI_D02	R8
GPMI_D03	U7
GPMI_D04	Т7
GPMI_D05	R7
GPMI_D06	U6
GPMI_D07	Т6
GPMI_RDN	R6
GPMI_RDY0	N6
GPMI_RDY1	N8
GPMI_RDY2	M8
GPMI_RDY3	L8
GPMI_RESETN	L9
GPMI_WRN	P8
HSADC0	B14
I2C0_SCL	C7
I2C0_SDA	D8
JTAG_RTCK	E14
JTAG_TCK	E11
JTAG_TDI	E12
JTAG_TDO	E13
JTAG_TMS	D12

Signal Name	Contact Assignment
LRADC6	C14
PSWITCH	A11
PWM0	К7
PWM1	L7
PWM2	К8
PWM3	E9
PWM4	E10
RESETN	A14
RTC_XTALI	D11
RTC_XTALO	C11
SAIF0_BITCLK	F7
SAIF0_LRCLK	G6
SAIF0_MCLK	G7
SAIF0_SDATA0	E7
SAIF1_SDATA0	E8
SPDIF	D7
SSP0_CMD	A4
SSP0_DATA0	В6
SSP0_DATA1	C6
SSP0_DATA2	D6
SSP0_DATA3	A5
SSP0_DATA4	В5
SSP0_DATA5	C5
SSP0_DATA6	D5
SSP0_DATA7	B4
SSP0_DETECT	D10
SSP0_SCK	A6
SSP1_CMD	C1
SSP1_DATA0	D1
SSP1_DATA3	E1
SSP1_SCK	B1
SSP2_MISO	В3

Signal Name	Contact Assignment
EMI_D04	P13
EMI_D05	P17
EMI_D06	L14
EMI_D07	M17
EMI_D08	G16
EMI_D09	H15
EMI_D10	G14
EMI_D11	J14
EMI_D12	H13
EMI_D13	H17
EMI_D14	F13
EMI_D15	F17
EMI_DDR_OPE N	K14
EMI_DDR_OPE N_FB	L15
EMI_DQM0	M15
EMI_DQM1	F15
EMI_DQS0	K17
EMI_DQS0N	К16
EMI_DQS1	J17

Signal Name	Contact Assignment
JTAG_TRST	D14
LCD_CS	P5
LCD_D00	K2
LCD_D01	КЗ
LCD_D02	L2
LCD_D03	L3
LCD_D04	M2
LCD_D05	М3
LCD_D06	N2
LCD_D07	P1
LCD_D08	P2
LCD_D09	P3
LCD_D10	R1
LCD_D11	R2
LCD_D12	T1
LCD_D13	T2
LCD_D14	U2
LCD_D15	U3
LCD_D16	ТЗ

Signal Name	Contact Assignment								
SSP2_MOSI	C3								
SSP2_SCK	A3								
SSP2_SS0	C4								
SSP2_SS1	D3								
SSP2_SS2	D4								
SSP3_MISO	B2								
SSP3_MOSI	C2								
SSP3_SCK	A2								
SSP3_SS0	D2								
TESTMODE	C10								
USB0DM	A10								
USB0DP	B10								
USB1DM	B8								
USB1DP	A8								
VDD1P5	D16								
VDD4P2	A13								
VDD5V	E17								
XTALI	A12								
XTALO	B12								

4.4 i.MX280 Ball Map

Table 66 shows the i.MX280 MAPBGA ball map.

Table 66. 289-Pin i.MX280 MAPBGA Ball Map

	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	
А	NSS	NC	SSP2_SCK	SSP0_CMD	SSP0_DATA3	SSP0_SCK	VDDIO33	USB1DP	VSS	USBODM	PSWITCH	XTALI	VDD4P2	RESETN	BATTERY	DCDC_LP	DCDC_GND	А

в	NC	NC	SSP2_MISO	SSP0_DATA7	SSP0_DATA4	SSP0_DATA0	VSS	USB1DM	DEBUG	USBODP	VSSA2	XTALO	VSSA1	HSADC0	DCDC_BATT	DCDC_VDDA	DCDC_LN1	В
υ	NC	NC	SSP2_MOSI	SSP2_SS0	SSP0_DATA5	SSP0_DATA1	I2C0_SCL	LRADC2	LRADC1	TESTMODE	RTC_XTALO	VDDXTAL	VDDA1	LRADC6	LRADC0	VSS	DCDC_VDDIO	υ
٩	NC	NC	SSP2_SS1	SSP2_SS2	SSP0_DATA6	SSP0_DATA2	NC	I2C0_SDA	LRADC3	SSP0_DETECT	RTC_XTALI	JTAG_TMS	LRADC4	JTAG_TRST	LRADC5	VDD1P5	DCDC_VDDD	D
ш	Ŋ	ENET_CLK	Ŋ	ENET0_RX_EN	VSS	VDDIO33	SAIF0_SDATA0	SAIF1_SDATA0	PWM3	PWM4	JTAG_TCK	JTAG_TDI	JTAG_TDO	JTAG_RTCK	VSS	VDDIO33	VDD5V	ш
ш	ENET0_TXD0	ENET0_TXD1	NC	ENET0_TX_EN	NC	NC	SAIF0_BITCLK	VDDIO18	VDDIO18	VDDD	VDDD	DDD	EMI_D14	VSSIO_EMI	EMI_DQM1	VSSIO_EMI	EMI_D15	Ľ
J	NC	NC	VDDIO33	ENETO_MDC	AUARTO_RX	SAIF0_LRCLK	SAIF0_MCLK	VDDIO18	VDDIO18	VDDD	VDDD	DDD	VDDIO_EMI	EMI_D10		EMI_D08	VDDIO_EMI	U
н	ENET0_RXD0	ENET0_RXD1	NSS	ENET0_MDIO	AUART0_TX	NC	NC	VDDIO33	NSS	SSV	NSS	SSV	EMI_D12	VSSIO_EMI	EMI_D09	NSS	EMI_D13	н
،	NC	NC	NC	NC	NC	AUARTO_CTS	AUARTO_RTS	VDDIO33	VDDIO33	VDDIO33	VSS	VSS	VDDIO_EMIQ	EMI_D11	VSS	EMI_DQS1N	EMI_DQS1	٦
¥	ETM_TCLK	ETM_DA0	ETM_DA1	AUART1_TX	NC	NC	PWMO	PWM2	VSS	VSS	VSS	DDD	EMI_VREF1	EMI_DDR_OPEN	VDDIO_EMIQ	EMI_DQS0N	EMI_DQS0	¥

Table 66. 289-Pin i.MX280 MAPBGA Ball Map (continued)

Table 66. 289-Pin i.MX280 MAPBGA Ball Map (continued)

4.5 i.MX283 Ball Map

Table 67 shows the i.MX283 MAPBGA ball map.

Table 67. 289-Pin i.MX283 MAPBGA Ball Map

	-	2	S	4	5	6	7	8	6	10	11	12	13	14	15	16	17	
٨	VSS	NC	SSP2_SCK	SSP0_CMD	SSP0_DATA3	SSP0_SCK	VDDIO33	USB1DP	NSS	USBODM	PSWITCH	XTALI	VDD4P2	RESETN	BATTERY	DCDC_LP	DCDC_GND	А

	1	1	1	1	1		1		1	1	1	-		1	1		1	
в	SN	SN	SSP2_MISO	SSP0_DATA7	SSP0_DATA4	SSP0_DATA0	VSS	USB1DM	DEBUG	USBODP	VSSA2	XTALO	VSSA1	HSADC0	DCDC_BATT	DCDC_VDDA	DCDC_LN1	В
υ	NC	NC	SSP2_MOSI	SSP2_SS0	SSP0_DATA5	SSP0_DATA1	I2C0_SCL	LRADC2	LRADC1	TESTMODE	RTC_XTALO	VDDXTAL	VDDA1	LRADC6	LRADC0	VSS	DCDC_VDDIO	C
D	NC	NC	SSP2_SS1	SSP2_SS2	SSP0_DATA6	SSP0_DATA2	NC	I2C0_SDA	LRADC3	SSP0_DETECT	RTC_XTALI	JTAG_TMS	LRADC4	JTAG_TRST	LRADC5	VDD1P5	DCDC_VDDD	D
ш	Ŋ	ENET_CLK	Ŋ	ENET0_RX_EN	VSS	VDDIO33	SAIF0_SDATA0	SAIF1_SDATA0	PWM3	PWM4	JTAG_TCK	JTAG_TDI	JTAG_TDO	JTAG_RTCK	VSS	VDDIO33	VDD5V	Ш
L	ENET0_TXD0	ENET0_TXD1	NC	ENET0_TX_EN	NC	NC	SAIF0_BITCLK	VDDIO18	VDDIO18	DDD	VDDD	UDDD	EMI_D14	VSSIO_EMI	EMI_DQM1	VSSIO_EMI	EMI_D15	L
5	NC	NC	VDDIO33	ENETO_MDC	AUARTO_RX	SAIF0_LRCLK	SAIF0_MCLK	VDDIO18	VDDIO18	VDDD	VDDD	VDDD	VDDIO_EMI	EMI_D10		EMI_D08	VDDIO_EMI	IJ
н	ENET0_RXD0	ENET0_RXD1	NSS	ENET0_MDIO	AUART0_TX	NC	NC	VDDIO33	NSS	NSS	NSS	NSS	EMI_D12	VSSIO_EMI	EMI_D09	NSS	EMI_D13	Н
٦	NC	NC	NC	NC	NC	AUARTO_CTS	AUARTO_RTS	VDDIO33	VDDIO33	VDDIO33	VSS	VSS	VDDIO_EMIQ	EMI_D11	VSS	EMI_DQS1N	EMI_DQS1	Ъ
¥	LCD_WR_RWN	LCD_D00	LCD_D01	AUART1_TX	NC	NC	PWMO	PWM2	VSS	VSS	VSS	DDD	EMI_VREF1	EMI_DDR_OPEN	VDDIO_EMIQ	EMI_DQS0N	EMI_DQS0	х

Table 67. 289-Pin i.MX283 MAPBGA Ball Map (continued)

	5	F	œ	٩	z	۶	
-	VSS	LCD_D12	LCD_D10	LCD_D07	NC	NC	NC
2	LCD_D14	LCD_D13	LCD_D11	LCD_D08	LCD_D06	LCD_D04	LCD_D02
3	LCD_D15	LCD_D16	LCD_D17	LCD_D09	VDDIO33	LCD_D05	LCD_D03
4	LCD_D18	LCD_D19	LCD_D20	LCD_RD_E	SSV	LCD_RS	AUART1_RX
5	LCD_D21	LCD_D22	LCD_D23	LCD_CS	NC	NC	NC
9	GPMI_D06	GPMI_D07	GPMI_RDN	GPMI_ALE	GPMI_RDY0	LCD_RESET	NC
7	GPMI_D03	GPMI_D04	GPMI_D05	GPMI_CLE	GPMI_CE0N	NC	PWM1
8	GPMI_D00	GPMI_D01	GPMI_D02	GPMI_WRN	GPMI_RDY1	NC	NC
6	EMI_A08	EMI_A13	EMI_A06	EMI_CE1N	GPMI_CE1N	NC	GPMI_RESETN
10	EMI_A04	EMI_A11	VSSIO_EMI	EMI_A09	EMI_A14	VDDIO_EMI	NSS
11	EMI_A12	EMI_A03	EMI_A05	VDDIO_EMI	EMI_A07	VDDIO_EMI	NSS
12	EMI_A01	EMI_BA1	VSSIO_EMI	EMI_CE0N	EMI_BA2	VDDIO_EMI	VSSIO_EMI
13	EMI_A10	EMI_CKE	VDDIO_EMI	EMI_D04	VDDIO_EMI	EMI_D01	VDDIO_EMI
14	EMI_A02	VSSIO_EMI	EMI_VREF0	VSSIO_EMI	EMI_D03	VSS	EMI_D06
15	EMI_A00	EMI_WEN	VDDIO_EMIQ	EMI_D02	VDDIO_EMI	EMI_DQM0	EMI_DDR_OPEN_FB
16	EMI_CASN	EMI_BA0	EMI_RASN	VSSIO_EMI	EMI_D00	VSSIO_EMI	EMI_CLKN
17	VSSIO_EMI	EMI_ODT1	EMI_ODT0	EMI_D05	VDDIO33_EMI	EMI_D07	EMI_CLK
	Þ	F	œ	٩	z	Μ	_

Table 67. 289-Pin i.MX283 MAPBGA Ball Map (continued)

4.6 i.MX286 Ball Map

Table 68 shows the i.MX286 MAPBGA ball map.

Table 68. 289-Pin i.MX286 MAPBGA Ball Map

	1	7	e	4	5	9	7	8	6	10	11	12	13	14	15	16	17	
٩	VSS	NC	SSP2_SCK	SSP0_CMD	SSP0_DATA3	SSP0_SCK	VDDI033	USB1DP	VSS	USBODM	PSWITCH	XTALI	VDD4P2	RESETN	BATTERY	DCDC_LP	DCDC_GND	А

в	NC	NC	SSP2_MISO	SSP0_DATA7	SSP0_DATA4	SSP0_DATA0	VSS	USB1DM	DEBUG	USBODP	VSSA2	XTALO	VSSA1	HSADC0	DCDC_BATT	DCDC_VDDA	DCDC_LN1	В
υ	NC	NC	SSP2_MOSI	SSP2_SS0	SSP0_DATA5	SSP0_DATA1	I2C0_SCL	LRADC2	LRADC1	TESTMODE	RTC_XTALO	VDDXTAL	VDDA1	LRADC6	LRADC0	VSS	DCDC_VDDIO	υ
٩	NC	NC	SSP2_SS1	SSP2_SS2	SSP0_DATA6	SSP0_DATA2	SPDIF	I2C0_SDA	LRADC3	SSP0_DETECT	RTC_XTALI	JTAG_TMS	LRADC4	JTAG_TRST	LRADC5	VDD1P5	DCDC_VDDD	D
ш	Ŋ	ENET_CLK	Ŋ	ENET0_RX_EN	VSS	VDDIO33	SAIF0_SDATA0	SAIF1_SDATA0	PWM3	PWM4	JTAG_TCK	JTAG_TDI	JTAG_TDO	JTAG_RTCK	VSS	VDDI033	VDD5V	ш
ш	ENET0_TXD0	ENET0_TXD1	NC	ENET0_TX_EN	NC	NC	SAIF0_BITCLK	VDDIO18	VDDIO18	VDDD	VDDD	DDD	EMI_D14	VSSIO_EMI	EMI_DQM1	VSSIO_EMI	EMI_D15	L
J	NC	NC	VDDIO33	ENETO_MDC	AUARTO_RX	SAIF0_LRCLK	SAIFO_MCLK	VDDIO18	VDDIO18	VDDD	VDDD	VDDD	VDDIO_EMI	EMI_D10		EMI_D08	VDDIO_EMI	U
н	ENET0_RXD0	ENET0_RXD1	NSS	ENET0_MDIO	AUART0_TX	NC	NC	VDDIO33	NSS	NSS	NSS	NSS	EMI_D12	VSSIO_EMI	EMI_D09	NSS	EMI_D13	н
،	NC	NC	NC	NC	NC	AUARTO_CTS	AUARTO_RTS	VDDIO33	VDDIO33	VDDIO33	VSS	VSS	VDDIO_EMIQ	EMI_D11	VSS	EMI_DQS1N	EMI_DQS1	٦
¥	LCD_WR_RWN	LCD_D00	LCD_D01	AUART1_TX	NC	NC	PWM0	PWM2	NSS	VSS	VSS	DDD	EMI_VREF1	EMI_DDR_OPEN	VDDIO_EMIQ	EMI_DQS0N	EMI_DQS0	¥

Table 68. 289-Pin i.MX286 MAPBGA Ball Map (continued)

n ^SS		T LCD_D12	R LCD_D10	P LCD_D07	z S	¤ OZ	P P
	LCD D14		LCD D11		LCD D06	LCD D04	LCD D02
							1 0 0 1 0
LCD	LCD_D15	LCD_D16	LCD_D17	LCD_D09	VDDIO33	LCD_D05	LCD_D03
LCE	LCD_D18	LCD_D19	LCD_D20	LCD_RD_E	NSS	LCD_RS	AUART1_RX
LCI	LCD_D21	LCD_D22	LCD_D23	LCD_CS	NC	NC	NC
GPN	GPMI_D06	GPMI_D07	GPMI_RDN	GPMI_ALE	GPMI_RDY0	LCD_RESET	NC
GPN	GPMI_D03	GPMI_D04	GPMI_D05	GPMI_CLE	GPMI_CE0N	GPMI_CE2N	PWM1
GPI	GPMI_D00	GPMI_D01	GPMI_D02	GPMI_WRN	GPMI_RDY1	GPMI_RDY2	GPMI_RDY3
≥ Ш	EMI_A08	EMI_A13	EMI_A06	EMI_CE1N	GPMI_CE1N	GPMI_CE3N	GPMI_RESETN
≥ Ш	EMI_A04	EMI_A11	VSSIO_EMI	EMI_A09	EMI_A14	VDDIO_EMI	NSS
Ш	EMI_A12	EMI_A03	EMI_A05	VDDIO_EMI	EMI_A07	VDDIO_EMI	NSS
Ы Ш	EMI_A01	EMI_BA1	VSSIO_EMI	EMI_CE0N	EMI_BA2	VDDIO_EMI	VSSIO_EMI
ЫN	EMI_A10	EMI_CKE		EMI_D04	VDDIO_EMI	EMI_D01	VDDIO_EMI
Ы Ш	EMI_A02	VSSIO_EMI	EMI_VREF0	VSSIO_EMI	EMI_D03	VSS	EMI_D06
Ш	EMI_A00	EMI_WEN	VDDIO_EMIQ	EMI_D02	VDDIO_EMI	EMI_DQM0	EMI_DDR_OPEN_FB
EMI	EMI_CASN	EMI_BA0	EMI_RASN	VSSIO_EMI	EMI_D00	VSSIO_EMI	EMI_CLKN
VSS	VSSIO_EMI	EMI_ODT1	EMI_ODT0	EMI_D05	VDDIO33_EMI	EMI_D07	EMI_CLK
	D	F	œ	٩	z	Μ	-1

Table 68. 289-Pin i.MX286 MAPBGA Ball Map (continued)

4.7 i.MX287 Ball Map

Table 69 shows the i.MX287 MAPBGA Ball Map.

Table 69. 289-Pin i.MX287 MAPBGA Ball Map

	-	7	e	4	5	9	7	8	6	10	11	12	13	14	15	16	17	
٩	VSS	SSP3_SCK	SSP2_SCK	SSP0_CMD	SSP0_DATA3	SSP0_SCK	VDDI033	USB1DP	NSS	USBODM	PSWITCH	XTALI	VDD4P2	RESETN	BATTERY	DCDC_LP	DCDC_GND	А

¥	٦ 	т	IJ	Ľ	ш	۵	υ	m
LCD_WR_RWN	ENET0_RXD2	ENET0_RXD0	ENET0_TXD2	ENET0_TXD0	SSP1_DATA3	SSP1_DATA0	SSP1_CMD	SSP1_SCK
LCD_D00	ENET0_RXD3	ENET0_RXD1	ENET0_TXD3	ENET0_TXD1	ENET_CLK	SSP3_SS0	SSP3_MOSI	SSP3_MISO
LCD_D01	ENET0_CRS	VSS	VDDIO33	ENET0_RX_CLK	ENET0_TX_CLK	SSP2_SS1	SSP2_MOSI	SSP2_MISO
AUART1_TX	ENET0_COL	ENET0_MDIO	ENET0_MDC	ENET0_TX_EN	ENET0_RX_EN	SSP2_SS2	SSP2_SS0	SSP0_DATA7
AUART1_CTS	AUART1_RTS	AUART0_TX	AUART0_RX	AUART2_TX	NSS	SSP0_DATA6	SSP0_DATA5	SSP0_DATA4
AUART3_RTS	AUART0_CTS	AUART2_CTS	SAIF0_LRCLK	AUART2_RX	VDDIO33	SSP0_DATA2	SSP0_DATA1	SSP0_DATA0
PWM0	AUART0_RTS	AUART2_RTS	SAIF0_MCLK	SAIF0_BITCLK	SAIF0_SDATA0	SPDIF	I2C0_SCL	VSS
PWM2	VDDIO33	VDDI033	VDDIO18	VDDIO18	SAIF1_SDATA0	I2C0_SDA	LRADC2	USB1DM
NSS	VDDIO33	VSS	VDDIO18	VDDIO18	PWM3	LRADC3	LRADC1	DEBUG
NSS	VDDIO33	VSS	VDDD	VDDD	PWM4	SSP0_DETECT	TESTMODE	USBODP
NSS	VSS	VSS	VDDD	VDDD	JTAG_TCK	RTC_XTALI	RTC_XTALO	VSSA2
DDD	VSS	VSS	VDDD	VDDD	JTAG_TDI	JTAG_TMS	VDDXTAL	XTALO
EMI_VREF1	VDDIO_EMIQ	EMI_D12	VDDIO_EMI	EMI_D14	JTAG_TDO	LRADC4	VDDA1	VSSA1
EMI_DDR_OPEN	EMI_D11	VSSIO_EMI	EMI_D10	VSSIO_EMI	JTAG_RTCK	JTAG_TRST	LRADC6	HSADC0
VDDIO_EMIQ	VSS	EMI_D09	VDDIO_EMI	EMI_DQM1	NSS	LRADC5	LRADC0	DCDC_BATT
EMI_DQS0N	EMI_DQS1N	VSS	EMI_D08	VSSIO_EMI	VDDIO33	VDD1P5	VSS	DCDC_VDDA
EMI_DQS0	EMI_DQS1	EMI_D13	VDDIO_EMI	EMI_D15	VDD5V	DCDC_VDDD	DCDC_VDDIO	DCDC_LN1
¥	7	т	IJ	Ľ	Ш	D	v	В

Table 69. 289-Pin i.MX287 MAPBGA Ball Map (continued)

	р	т	۵	٩	z	Μ	
-	VSS	LCD_D12	LCD_D10	LCD_D07	LCD_DOTCLK	LCD_HSYNC	LCD_VSYNC
2	LCD_D14	LCD_D13	LCD_D11	LCD_D08	LCD_D06	LCD_D04	LCD_D02
3	LCD_D15	LCD_D16	LCD_D17	LCD_D09	VDDIO33	LCD_D05	LCD_D03
4	LCD_D18	LCD_D19	LCD_D20	LCD_RD_E	NSS	LCD_RS	AUART1_RX
5	LCD_D21	LCD_D22	LCD_D23	LCD_CS	LCD_ENABLE	AUART3_RX	AUART3_TX
9	GPMI_D06	GPMI_D07	GPMI_RDN	GPMI_ALE	GPMI_RDY0	LCD_RESET	AUART3_CTS
7	GPMI_D03	GPMI_D04	GPMI_D05	GPMI_CLE	GPMI_CE0N	GPMI_CE2N	PWM1
8	GPMI_D00	GPMI_D01	GPMI_D02	GPMI_WRN	GPMI_RDY1	GPMI_RDY2	GPMI_RDY3
6	EMI_A08	EMI_A13	EMI_A06	EMI_CE1N	GPMI_CE1N	GPMI_CE3N	GPMI_RESETN
10	EMI_A04	EMI_A11	VSSIO_EMI	EMI_A09	EMI_A14	VDDIO_EMI	NSS
11	EMI_A12	EMI_A03	EMI_A05	VDDIO_EMI	EMI_A07	VDDIO_EMI	NSS
12	EMI_A01	EMI_BA1	VSSIO_EMI	EMI_CEON	EMI_BA2	VDDIO_EMI	VSSIO_EMI
13	EMI_A10	EMI_CKE	VDDIO_EMI	EMI_D04	VDDIO_EMI	EMI_D01	VDDIO_EMI
14	EMI_A02	VSSIO_EMI	EMI_VREF0	VSSIO_EMI	EMI_D03	VSS	EMI_D06
15	EMI_A00	EMI_WEN	VDDIO_EMIQ	EMI_D02	VDDIO_EMI	EMI_DQM0	EMI_DDR_OPEN_FB
16	EMI_CASN	EMI_BA0	EMI_RASN	VSSIO_EMI	EMI_D00	VSSIO_EMI	EMI_CLKN
17	VSSIO_EMI	EMI_ODT1	EMI_ODT0	EMI_D05	VDDIO33_EMI	EMI_D07	EMI_CLK
	Þ	F	œ	٩	z	Σ	_

Table 69. 289-Pin i.MX287 MAPBGA Ball Map (continued)

Revision History

5 Revision History

Table 70 summarizes revisions to this document.

Rev. Number	Date	Substantive Change(s)
Rev. 3	07/2012	 Removed the Power Consumption table, and added Table 12, "Run IDD Test Case¹," on page 14. Updated Table 23, "ON Impedance of EMI Drivers for Different Drive Strengths," on page 20.
Rev. 2	03/2012	 In Section 1.1, "Device Features:" —Updated synchronous serial ports (SSP) support for the i.MX28 —Updated Ethernet support for the i.MX28 —Updated Table 2, "i.MX28 Functional Differences," on page 4. In Table 6, "DC Absolute Maximum Ratings," on page 12, removed the PSWITCH parameter as this paramater is explained in detail in Table 11. In Table 8, "Recommended Power Supply Operating Conditions," on page 13: —Updated two parameters: "VDD5V Supply Voltage" and "Offstate Current" —Updated two parameters: "VDD5V Supply Voltage" and "Offstate Current" —Updated the third footnote In Table 9, "Operating Temperature Conditions," on page 13, added a new footnote in the "Parameter" column. In Table 13, "Power Supply Characteristics," on page 15, updated the "VDD4P2 Output Current Limit Accuracy" parameter. In Section 3.1.2.1, "Recommended Operating Conditions for Specific Clock Targets:" —Removed the "System Clocks" table —Updated two TBD values in the first row of Table 14 —Removed the first row in Table 15 —Removed the first row in Table 16 In Table 20, "Power Mode Settings," on page 17, changed the second column name from "Deep Sleep" to "Offstate." Updated Table 22, "EMI Digital Pin DC Characteristics," on page 20. In Table 31, "HSADC Electrical Specifications," on page 27, updated the "DC Electrical Specification" section. In Table 31, "HSADC Electrical Specification," on page 28, updated the "DC Electrical Specification" section. In Section 3.5.5.1, "TRACECLK Timing," corrected the title of Table 43.
Rev. 1	04/2011	 Updated Section 1.1, "Device Features." Added Section 3.2, "Thermal Characteristics." In Table 1, "Ordering Information," on page 3, added two rows. Updated Table 2, "i.MX28 Functional Differences," on page 4. Updated Table 4, "i.MX28 Digital and Analog Modules," on page 7. In Table 8, "Recommended Power Supply Operating Conditions," on page 13, updated BATT row. Updated Table 9, "Operating Temperature Conditions," on page 13. Replaced the term "DC Characteristics" with "Power Consumption" in the title and introduction of the Power Consumption table. Also changed Dissipation to Consumption in first row. Updated Table 25, "Digital Pin DC Characteristics for GPIO in 3.3-V Mode," on page 21. Updated Table 26, "Digital Pin DC Characteristics for GPIO in 1.8 V Mode," on page 22. Updated and added a footnote to Table 33, "Ethernet PLL Specifications," on page 29. Updated DDR1 row of Table 34, "EMI Command/Address AC Timing," on page 30. Added Section 4.4, "i.MX280 Ball Map." In Section 4.5, "i.MX283 Ball Map," updated Figure 67.

Table 70. Document Revision History

Revision History

Rev. Number	Date	Substantive Change(s)
Rev. 0	09/2010	Initial release.

Table 70. Document Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM9 is a trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

Document Number: IMX28CEC Rev. 3 07/2012

