

August 1999 Revised October 1999

74ACT16543

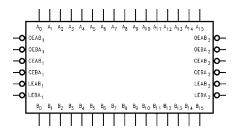
16-Bit Registered Transceiver with 3-STATE Outputs

General Description

The ACT16543 contains sixteen non-inverting transceivers containing two sets of D-type registers for temporary storage of data flowing in either direction. Each byte has separate control inputs which can be shorted together for full 16-bit operation. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent input and output control in either direction of data flow.

Features

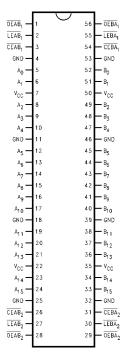
- Independent registers for A and B buses
- Separate controls for data flow in each direction
- Back-to-back registers for storage


 Multiplexed real-time and stored data transfers
- Separate control logic for each byte
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description			
74ACT16543SSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide			
74ACT16543MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

Pin Names	Descriptions
OEAB _n	A-to-B Output Enable Input (Active LOW)
OEBAn	B-to-A Output Enable Input (Active LOW)
CEAB _n	A-to-B Enable Input (Active LOW)
CEBAn	B-to-A Enable Input (Active LOW)
LEAB _n	A-to-B Latch Enable Input (Active LOW)
LEBA _n	B-to-A Latch Enable Input (Active LOW)
A ₀ -A ₁₅	A-to-B Data Inputs or
	B-to-A 3-STATE Outputs
B ₀ -B ₁₅	B-to-A Data Inputs or
	A-to-B 3-STATE Outputs

Connection Diagram

FACT™ is a trademark of Fairchild Semiconductor Corporation.

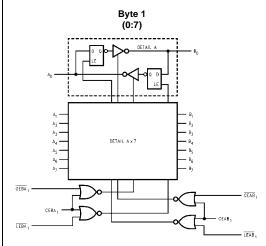
Functional Description

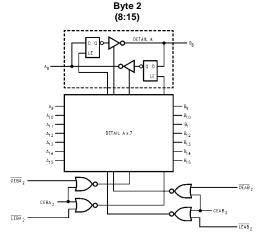
The ACT16543 contains sixteen non-inverting transceivers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins may be shorted together to obtain full 16-bit operation. The following description applies to each byte. For data flow from A to B, for example, the A-to-B Enable (\overline{CEAB}_n) input must be LOW in order to enter data from A_0-A_{15} or take data from B_0-B_{15} , as indicated in the Data I/O Control Table. With \overline{CEAB}_n LOW, a LOW signal on the A-to-B Latch Enable (\overline{LEAB}_n) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the \overline{LEAB}_n signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With \overline{CEAB}_n and \overline{OEAB}_n both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the \overline{CEBA}_n in \overline{DEBA}_n and \overline{OEBA}_n inputs.

Data I/O Control Table

	Inputs		Latch Status	Output
CEAB _n	LEAB _n	OEAB _n	(Byte n)	Buffers (Byte n)
Н	Х	Х	Latched	High Z
X	Н	X	Latched	_
L	L	Χ	Transparent	_
X	X	Н	_	High Z
L	Χ	L	_	Driving

H = HIGH Voltage Level


L = LOW Voltage Level


X = Immaterial

A-to-B data flow shown; B-to-A flow control

is the same, except using $\overline{\text{CEBA}}_n, \overline{\text{LEBA}}_n$ and $\overline{\text{OEBA}}_n$

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ll} V_I = -0.5 V & -20 \text{ mA} \\ V_I = V_{CC} + 0.5 V & +20 \text{ mA} \end{array} \label{eq:vi}$

DC Output Diode Current (I_{OK})

 $\begin{array}{ll} \mbox{V}_{\mbox{O}} = -0.5 \mbox{V} & -20 \mbox{ mA} \\ \mbox{V}_{\mbox{O}} = \mbox{V}_{\mbox{CC}} + 0.5 \mbox{V} & +20 \mbox{ mA} \end{array}$

DC Output Voltage (V_O) $-0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V}$ DC Output Source/Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin $\pm 50 \text{ mA}$ Storage Temperature -65°C to $+150^{\circ}\text{C}$

Recommended Operating Conditions

 $\begin{array}{lll} \text{Supply Voltage (V}_{\text{CC}}) & 4.5 \text{V to } 5.5 \text{V} \\ \text{Input Voltage (V}_{\text{I}}) & 0 \text{V to V}_{\text{CC}} \\ \text{Output Voltage (V}_{\text{O}}) & 0 \text{V to V}_{\text{CC}} \end{array}$

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to} + 85^{\circ}C$	Unito	Conditions	
Farameter	(V)	Тур	Gu	aranteed Limits	Uillis	Conditions	
Minimum HIGH	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
Input Voltage	5.5	1.5	2.0	2.0	v	or V _{CC} – 0.1V	
Maximum LOW	4.5	1.5	0.8	0.8	W	V _{OUT} = 0.1V	
Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} – 0.1V	
Minimum HIGH	4.5	4.49	4.4	4.4	W	I _{OUT} = -50 μA	
Output Voltage	5.5	5.49	5.4	5.4	v	1 _{OUT} = -30 μA	
						$V_{IN} = V_{IL} \text{ or } V_{IH}$	
	4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
	5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$	
Maximum LOW	4.5	0.001	0.1	0.1	W		
Output Voltage	5.5	0.001	0.1	0.1	v	$I_{OUT} = 50 \mu A$	
						$V_{IN} = V_{IL} \text{or } V_{IH}$	
	4.5		0.36	0.44	V	I _{OL} = 24 mA	
	5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
Maximum I/O	5.5		+0.5	+5.0	μА	$V_I = V_{IL}, V_{IH}$	
Leakage Current	5.5		10.5	±3.0		$V_O = V_{CC}$, GND	
Maximum Input	5.5		+0.1	+1.0	Δ	$V_I = V_{CC}$	
Leakage Current	3.3		±0.1	±1.0	μΑ	GND	
Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$	
Max Quiescent	5.5		9.0	80.0	μА	$V_{IN} = V_{CC}$	
Supply Current	5.5		0.0			or GND	
Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
Output Current (Note 3)	3.3			-75	mA	V _{OHD} = 3.85V Min	
	Input Voltage Maximum LOW Input Voltage Minimum HIGH Output Voltage Maximum LOW Output Voltage Maximum I/O Leakage Current Maximum Input Leakage Current Maximum I _{CC} /Input Max Quiescent Supply Current Minimum Dynamic	Name Name	Name	Name	Name	Name	

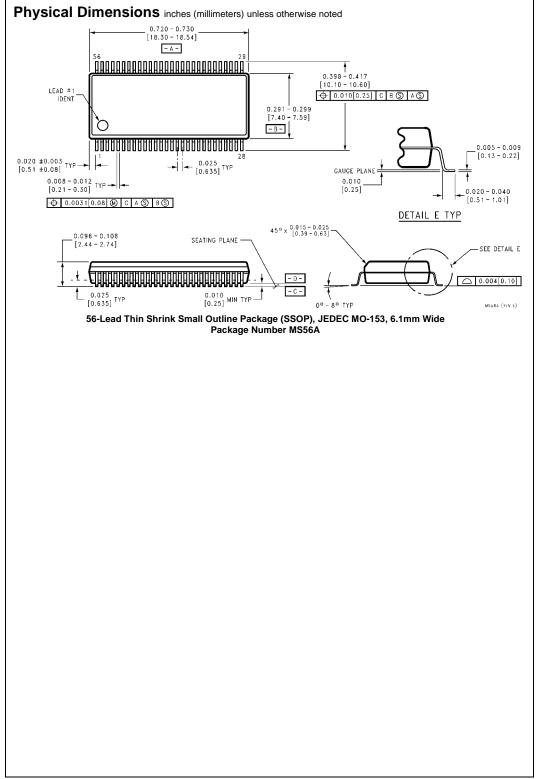
Note 2: All outputs loaded; thresholds associated with output under test.

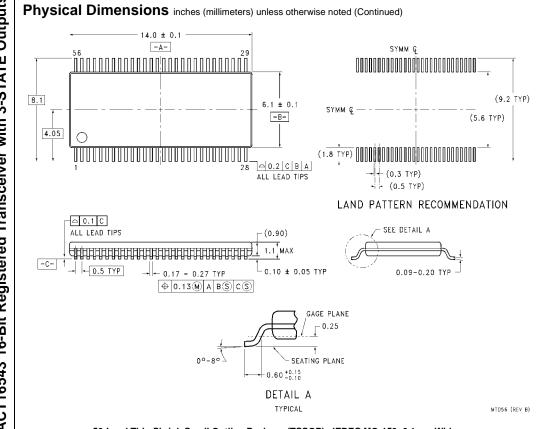
Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C ₁ = 50 pF			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		Units
,		(Note 4)	Min Typ Max		Min Max			
t _{PLH}	Propagation Delay		3.8	5.9	8.3	3.0	9.0	
t _{PHL}	Transparent Mode	5.0	3.5	5.5	7.9	2.6	8.5	ns
	A _n to B _n or B _n to A _n							
t _{PLH}	Propagation Delay		4.7	6.9	9.8	3.4	10.8	
t _{PHL}	LEBA _n , LEAB _n	5.0	3.9	6.3	9.0	3.1	9.8	ns
	to A _n , B _n							
t _{PZH}	Output Enable Time		4.2	6.3	9.2	3.0	9.9	
t_{PZL}	\overline{OEBA}_n or \overline{OEAB}_n to A_n or B_n	5.0	4.9	7.3	10.3	3.6	10.3	ns
	$\overline{\text{CEBA}}_{\text{n}}$ or $\overline{\text{CEAB}}_{\text{n}}$ to A_{n} or B_{n}							
t _{PHZ}	Output Disable Time		2.8	5.2	8.0	2.1	8.3	
t_{PLZ}	$\overline{\text{OEBA}}_n$ or $\overline{\text{OEAB}}_n$ to A_n or B_n	5.0	2.6	5.0	7.6	2.0	8.1	ns
	CEBA _n or CEAB _n to A _n or B _n							

Note 4: Voltage Range 5.0 is 5.0V ± 0.5V.


AC Operating Requirements


Symbol	Parameter	V _{CC} (V) (Note 5)	$T_A = +25$ °C $C_L = 50 \text{ pF}$ Guaran	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	Units
t _S	Setup Time, HIGH or LOW A_n or B_n to \overline{LEBA}_n or \overline{LEAB}_n	5.0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW A_n or B_n to \overline{LEBA}_n or \overline{LEAB}_n	5.0	1.5	1.5	ns
t _W	Latch Enable, B to A Pulse Width, LOW	5.0	4.0	4.0	ns

Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance

Symbol	mbol Parameter		Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0V
C _{PD}	Power Dissipation.Capacitance	95.0	pF	$V_{CC} = 5.0V$

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com