

CMPA2735075F1

75 W, 2.7 - 3.5 GHz, GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA2735075F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

Package Type: 440219 PN: CMPA2735075F1

Typical Performance Over 2.7 - 3.5 GHz ($T_c = 25^{\circ}C$)

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	29	29	30	29	29	dB
Saturated Output Power	63	74	86	80	79	W
PAE @ P _{SAT}	45	54	57	57	57	%

Notes P_{IN} = 28 dBm

Features

- 29 dB Small Signal Gain
- 76 W Typical P_{SAT}
- 28 V Operation
- High Breakdown Voltage
- High Temperature Operation
- 0.5" x 0.5" Total Product Size

Applications

• Civil and Military Pulsed Radar Amplifiers

Rev. 1.0, 2022-9-20

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	N	ar°c
Gate-source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	l _G	28	mA	25°C
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case (packaged) ¹		0.77	00/04	300μsec, 20%, 85°C
Thermal Resistance, Junction to Case (packaged) ²	- R _{θJC}	2.0	°C/W	CW, 85°C

Notes:

 1 Measured for the CMPA2735075F1 at P_{DISS} = 64 W (pulsed)

 $^{\rm 2}$ Measured for the CMPA2735075F1 at $P_{\rm DISS}$ = 56 W (CW)

Electrical Characteristics (Frequency = 2.7 GHz to 3.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 28 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	_	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	19.6	27.4	—	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BD}	84	_	_	V	$V_{GS} = -8 V$, $I_{D} = 28 mA$
RF Characteristics ^{2,3}						
Small Signal Gain	S21	26.5	28.6	-		
Input Return Loss	S11	_	-14.4	-10	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$
Output Return Loss	S22	_	-10.3	-7		
Output Power at 2.7 GHz	Pouti	45.7	63	_		
Output Power at 2.9 GHz	P _{OUT2}	60.2	74	—		
Output Power at 3.1 GHz	P _{OUT3}		86	—	w	
Output Power at 3.3 GHz	P _{OUT4}	66.1	80	_		
Output Power at 3.5 GHz	P _{OUT5}		79	-		
Power Added Efficiency at 2.7 GHz	PAE ₁	_	45	_		$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 28 \text{ dBm},$
Power Added Efficiency at 2.9 GHz	PAE ₂	45	54	_		
Power Added Efficiency at 3.1 GHz	PAE ₃	49		_	%	
Power Added Efficiency at 3.3 GHz	PAE ₄	40	57	_		
Power Added Efficiency at 3.5 GHz	PAE₅	48		_		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 800 \text{ mA}$, $P_{OUT} = 75 \text{ W}$

Notes:

¹Scaled from PCM data

²All data pulse tested in CMPA2735075F1-AMP

³ Pulse Width = 300µs, Duty Cycle = 20%

Rev. 1.0, 2022-9-20

Typical Performance of the CMPA2735075F1

Figure 1. Gain and Return Losses vs Frequency of the CMPA2735075F1 Measured in CMPA2735075F1-AMP Amplifier Circuit V_{DS} = 28 V, I_{DS} = 800 mA

Rev. 1.0, 2022-9-20

Typical Pulse Droop Performance

Pulse Width	Duty Cycle (%)	Droop (dB)
10µs	5-25	0.10
50µs	5-25	0.10
100µs	5-25	0.10
300µs	5-25	0.20
1 ms	5-25	0.20
5 ms	5-25	0.20

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	3A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CGHV37400F-AMP Application Circuit Bill of Materials

Designator	Description	Qty
L1	FERRITE, 22 OHM, 0805	1
R1	RES, 1/8W, 1206, 5%, 0 OHM	1
R2	RES, 1/16W, 0603, 5%, 10K	1
C1	CAP, 15000pF, 100V, 0805, X7R	1
C2	CAP, 1000μF, 20%, 50V, ELECT, MVY, SMD	1
W1	CABLE, 18 AWG, 4.2	1
J4	CONNECTOR; SMB, Straight JACK, SMD	1
J1,J2	CONN, N, FEM, W/.500 SMA FLNG	2
J3	DC CONN, HEADER RT>PLZ .1CEN LK 9POS	1
Q1	CMPA2735075F1	1
	2-56 SOC HD SCREW 1/4 SS (For Device)	4
	WIRE ASSEMBLY, 9-PIN, TEST FIXTURE	1
	LEAD CLAMP, DELRIN	2
	2-56 SOC HD SCREW 1/2 SS (For Clamps)	4
	INDIUM TIM, AL CLAD, .47"x .30" x .003"	1
	TEST FIXTURE INSTRUCTIONS	1

CMPA2735075F1-AMP Demonstration Amplifier Circuit Bill of Materials

Rev. 1.0, 2022-9-20

CMPA2735075F1-AMP Demonstration Amplifier Circuit Schematic

CMPA2735075F1-AMP Demonstration Amplifier Circuit Outline

Rev. 1.0, 2022-9-20

F-

Product Dimensions CMPA2735075F1 (Package Type – 440219)

B (6X)

1 -

NOT TO SCALE

∖_7

PIN	Function
1	Gate
2	RF In
3	Gate
4	Drain
5	RF Out
6	Drain
7	Source

NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION. 5. ALL PLATED SURFACES ARE NI/AU

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A	0.495	0.505	12.57	12.82
В	0.003	0.005	0.076	0.127
С	0.140	0.160	3.56	4.06
D	0.315	0.325	8.00	8.25
E	0.008	0.012	0.204	0.304
F	0.055	0.065	1.40	1.65
G	0.495	0.505	12.57	12.82
н	0.695	0.705	17.65	17.91
J	0.403	0.413	10.24	10.49
к	ø.	ø .092		34
L	0.075	0.085	1.905	2.159
м	0.032	0.040	0.82	1.02

Rev. 1.0, 2022-9-20

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	2.7	GHz
Upper Frequency	3.5	GHZ
Power Output	75	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value

Table 2.

Character Code	Code Value
А	0
В	1
C	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Rev. 1.0, 2022-9-20

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2735075F1	GaN HEMT	Each	Brent Status
CMPA2735075F1-AMP	Test board with GaN HEMT installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2019-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 1.0, 2022-9-20