SN54ABT853 . . . JT OR W PACKAGE

SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010

- State-of-the-Art *EPIC-*II*B*<sup>™</sup> BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- Typical V<sub>OLP</sub> (Output Ground Bounce) < 1 V at V<sub>CC</sub> = 5 V,  $T_A = 25^{\circ}C$
- High-Drive Outputs (–32-mA I<sub>OH</sub>, 64-mA I<sub>OL</sub>)
- High-Impedance State During Power Up and Power Down
- Parity-Error Flag With Parity Generator/Checker
- Latch for Storage of Parity-Error Flag
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (NT) and Ceramic (JT) DIPs

#### description

The 'ABT853 8-bit to 9-bit parity transceivers are designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable (OEA and OEB) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT853 transceivers provide true data at their outputs.

| SN74ABT853 D                                                                            | )B, DW,<br>(TOP VI                                          |                                                                      | OR PW PACKAGE                                                                                                  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| OEA [<br>41 ]<br>42 [<br>43 ]<br>44 [<br>45 ]<br>46 [<br>47 ]<br>48 [<br>ERR ]<br>6ND [ | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13 | ] V <sub>CC</sub><br>] B1<br>] B2<br>] B3<br>] B4<br>] B5<br>] B6<br>] B7<br>] B8<br>] PARITY<br>] OEB<br>] LE |
|                                                                                         |                                                             |                                                                      |                                                                                                                |

SN54ABT853 . . . FK PACKAGE (TOP VIEW)



NC - No internal connection

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with the ERR flag. The parity-error output can be passed, sampled, stored, or cleared from the latch using the latch-enable (LE) and clear (CLR) control inputs. When both OEA and OEB are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

When  $V_{CC}$  is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1997, Texas Instruments Incorporated

SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010

### description (continued)

The SN54ABT853 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C. The SN74ABT853 is characterized for operation from  $-40^{\circ}$ C to  $85^{\circ}$ C.

|     |     |     |       |                             | FUNCT                                    | TION TAI | BLE   |             |                         |                                              |
|-----|-----|-----|-------|-----------------------------|------------------------------------------|----------|-------|-------------|-------------------------|----------------------------------------------|
|     |     |     | INPUT | S                           |                                          |          | OUTPU | ITS AND I/O |                         |                                              |
| OEB | OEA | CLR | LE    | <b>Α</b> ί<br>Σ <b>ΟF Η</b> | <b>Β</b> ί <sup>†</sup><br>Σ <b>ΟF Η</b> | Α        | в     | PARITY      | <b>ERR</b> <sup>‡</sup> | FUNCTION                                     |
| L   | Н   | х   | х     | Odd<br>Even                 | NA                                       | NA       | Α     | L<br>H      | NA                      | A data to B bus and generate parity          |
| н   | L   | х   | L     | NA                          | Odd<br>Even                              | В        | NA    | NA          | H<br>L                  | B data to A bus and check parity             |
| Н   | L   | Н   | Н     | NA                          | Х                                        | Х        | NA    | NA          | NC                      | Store error flag                             |
| Х   | Х   | L   | Н     | Х                           | Х                                        | Х        | NA    | NA          | Н                       | Clear error flag register                    |
|     |     | Н   | Н     | Х                           |                                          |          |       |             | NC                      |                                              |
| н   | н   | L   | Н     | Х                           | х                                        | 7        | z     | z           | Н                       | Isolation <sup>§</sup>                       |
|     | п   | х   | L     | L Odd                       | ~                                        | 2        | Z     | Z           | Н                       | (parity check)                               |
|     |     | х   | L     | H Even                      |                                          |          |       |             | L                       |                                              |
| L   | L   | x   | х     | Odd<br>Even                 | NA                                       | NA       | А     | H<br>L      | NA                      | A data to B bus and generate inverted parity |

NA = not applicable, NC = no change, X = don't care

<sup>†</sup> Summation of high-level inputs includes PARITY along with Bi inputs.

<sup>‡</sup> Output states shown assume ERR was previously high.

§ In this mode, ERR (when clocked) shows inverted parity of the A bus.

### logic symbol<sup>¶</sup>



 $^{\tt I}$  This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.



SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010



logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.

| INPU | JTS | INTERNAL OUTPUT<br>TO DEVICE PRESTATE |                                         |     | FUNCTION |  |  |  |  |  |  |
|------|-----|---------------------------------------|-----------------------------------------|-----|----------|--|--|--|--|--|--|
| CLR  | LE  | POINT P                               | $\overline{\text{ERR}}_{N-1}^{\dagger}$ | ERR |          |  |  |  |  |  |  |
|      |     | L                                     | L                                       |     | L L      |  |  |  |  |  |  |
| L    | L   | н                                     | Х                                       | н   | Pass     |  |  |  |  |  |  |
|      |     | L                                     | Х                                       | L   |          |  |  |  |  |  |  |
| н    | L   | Х                                     | L                                       | L   | Sample   |  |  |  |  |  |  |
|      |     | н                                     | Н                                       | н   |          |  |  |  |  |  |  |
| L    | Н   | Х                                     | Х                                       | Н   | Clear    |  |  |  |  |  |  |
| н    | н   | х                                     | L                                       | L   | Store    |  |  |  |  |  |  |
|      | П   | ~                                     | Н                                       | н   | Store    |  |  |  |  |  |  |

#### ERROR-FLAG FUNCTION TABLE

<sup>†</sup> The state of ERR before changes at CLR, LE, or point P



SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V <sub>CC</sub>                      |                               | –0.5 V to 7 V   |
|------------------------------------------------------------|-------------------------------|-----------------|
| Input voltage range, VI: Except I/O ports (see N           | Note 1)                       | –0.5 V to 7 V   |
| Voltage range applied to any output in the high            | n or power-off state, $V_O$ . | –0.5 V to 5.5 V |
| Current into any output in the low state, Io: SN           | 54ABT853                      |                 |
| SN                                                         | 74ABT853                      | 128 mA          |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0)  |                               | –18 mA          |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0) |                               | –50 mA          |
| Package thermal impedance, $\theta_{JA}$ (see Note 2)      | : DB package                  | 104°C/W         |
|                                                            | DW package                    | 81°C/W          |
|                                                            | N package                     | 67°C/W          |
|                                                            | PW package                    | 120°C/W         |
| Storage temperature range, T <sub>stg</sub>                |                               | 65°C to 150°C   |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.



SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010

### recommended operating conditions (see Note 3)

|                            |                                    |                 | SN54A | BT853    | SN74A | BT853    |      |
|----------------------------|------------------------------------|-----------------|-------|----------|-------|----------|------|
|                            |                                    |                 | MIN   | MAX      | MIN   | MAX      | UNIT |
| V <sub>CC</sub>            | Supply voltage                     |                 | 4.5   | 5.5      | 4.5   | 5.5      | V    |
| V <sub>IH</sub>            | High-level input voltage           |                 | 2     |          | 2     |          | V    |
| V <sub>IL</sub>            | Low-level input voltage            |                 |       | 0.8      |       | 0.8      | V    |
| VI                         | Input voltage                      |                 | 0     | $V_{CC}$ | 0     | $V_{CC}$ | V    |
| V <sub>OH</sub>            | High-level output voltage          | ERR             |       | 5.5      |       | 5.5      | V    |
| I <sub>OH</sub>            | High-level output current          | Except ERR      |       | -24      |       | -32      | mA   |
| I <sub>OL</sub>            | Low-level output current           |                 |       | 48       |       | 64       | mA   |
| $\Delta t/\Delta v$        | Input transition rise or fall rate | Outputs enabled |       | 10       |       | 10       | ns/V |
| $\Delta t / \Delta V_{CC}$ | Power-up ramp rate                 |                 | 200   |          | 200   |          | μs/V |
| T <sub>A</sub>             | Operating free-air temperature     |                 | -55   | 125      | -40   | 85       | °C   |

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.



SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                             |                | TEAT OF                                                                                   |                                                            | Г   | Γ <sub>A</sub> = 25°0 | 0     | SN54A | BT853 | SN74A | BT853 |      |
|-----------------------------|----------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|-----|-----------------------|-------|-------|-------|-------|-------|------|
| PA                          | RAMETER        | TEST CO                                                                                   | NDITIONS                                                   | MIN | TYP <sup>†</sup>      | MAX   | MIN   | MAX   | MIN   | MAX   | UNIT |
| V <sub>IK</sub>             |                | V <sub>CC</sub> = 4.5 V,                                                                  | l <sub>I</sub> = −18 mA                                    |     |                       | -1.2  |       | -1.2  |       | -1.2  | V    |
|                             |                | V <sub>CC</sub> = 4.5 V,                                                                  | I <sub>OH</sub> = –3 mA                                    | 2.5 |                       |       | 2.5   |       | 2.5   |       |      |
| .,                          | All outputs    | V <sub>CC</sub> = 5 V,                                                                    | I <sub>OH</sub> = –3 mA                                    | 3   |                       |       | 3     |       | 3     |       | .,   |
| V <sub>OH</sub>             | except ERR     |                                                                                           | I <sub>OH</sub> = -24 mA                                   | 2   |                       |       | 2     |       |       |       | V    |
|                             |                | V <sub>CC</sub> = 4.5 V                                                                   | I <sub>OH</sub> = -32 mA                                   | 2*  |                       |       |       |       | 2     |       |      |
| .,                          |                |                                                                                           | I <sub>OL</sub> = 24 mA                                    |     |                       | 0.55  |       | 0.55  |       |       | v    |
| V <sub>OL</sub>             |                | V <sub>CC</sub> = 4.5 V                                                                   | I <sub>OL</sub> = 64 mA                                    |     |                       | 0.55* |       |       |       | 0.55  | V    |
| V <sub>hys</sub>            |                |                                                                                           |                                                            |     | 100                   |       |       |       |       |       | mV   |
| I <sub>OH</sub>             | ERR            | V <sub>CC</sub> = 4.5 V,                                                                  | V <sub>OH</sub> = 5.5 V                                    |     |                       | 50    |       | 50    |       | 50    | μA   |
|                             | Control inputs |                                                                                           | $V_{I} = V_{CC}$ or GND                                    |     |                       | ±1    |       | ±1    |       | ±1    | A    |
| 1 <sub>1</sub>              | A or B ports   | V <sub>CC</sub> = 5.5 V,                                                                  | $v_{\rm I} = v_{\rm CC}$ or GND                            |     |                       | ±100  |       | ±100  |       | ±100  | μA   |
| I <sub>OZPU</sub> ‡         |                | $V_{CC} = 0$ to 2.1 V,<br>$V_{O} = 0.5$ V to 2.7 V, $\overline{C}$                        |                                                            |     | ±50                   |       | ±50   |       | ±50   | μA    |      |
| I <sub>OZPD</sub> ‡         |                | $V_{CC} = 2.1 \text{ V to 0},$<br>$V_{O} = 0.5 \text{ V to 2.7 V}, \overline{\text{C}}$   |                                                            |     | ±50                   |       | ±50   |       | ±50   | μA    |      |
| I <sub>OZH</sub> §          |                | $V_{CC}$ = 5.5 V, For cont<br>output under test V <sub>IH</sub><br>V <sub>O</sub> = 2.7 V |                                                            |     | 10                    |       | 10    |       | 10    | μA    |      |
| I <sub>OZL</sub> §          |                | $V_{CC}$ = 5.5 V, For cont<br>output under test V <sub>IH</sub><br>V <sub>O</sub> = 0.5 V | rol input affecting<br>= 2.0 V or V <sub>IL</sub> = 0.8 V, |     |                       | -10   |       | -10   |       | -10   | μA   |
| I <sub>off</sub>            |                | V <sub>CC</sub> = 0,                                                                      | $V_{I} \text{ or } V_{O} \leq 4.5 \text{ V}$               |     |                       | ±100  |       |       |       | ±100  | μA   |
| I <sub>CEX</sub>            |                | V <sub>CC</sub> = 5.5 V,<br>V <sub>O</sub> = 5.5 V                                        | Outputs high                                               |     |                       | 50    |       | 50    |       | 50    | μA   |
| ۱ <sub>0</sub> ¶            |                | V <sub>CC</sub> = 5.5 V,                                                                  | V <sub>O</sub> = 2.5 V                                     | -50 | -100                  | -200# | -50   | -200# | -50   | -200# | mA   |
|                             |                | V <sub>CC</sub> = 5.5 V,                                                                  | Outputs high                                               |     | 1                     | 250   |       | 450   |       | 250   | μA   |
| Icc                         | A or B ports   | $l_{\rm O} = 0,$                                                                          | Outputs low                                                |     | 24                    | 38    |       | 38    |       | 38    | mA   |
|                             |                | $V_{I} = V_{CC}$ or GND                                                                   | Outputs disabled                                           |     | 0.5                   | 250   |       | 450   |       | 250   | μA   |
|                             |                | V <sub>CC</sub> = 5.5 V,<br>One input at 3.4 V,                                           | Outputs enabled                                            |     |                       | 1.5   |       | 1.5   |       | 1.5   | mA   |
| $\Delta I_{CC}^{\parallel}$ | Data inputs    | Other inputs at V <sub>CC</sub> or GND                                                    | Outputs disabled                                           |     |                       | 50    |       | 50    |       | 50    | μA   |
|                             | Control inputs | $V_{CC}$ = 5.5 V, One inp<br>Other inputs at $V_{CC}$ of                                  |                                                            |     |                       | 1.5   |       | 1.5   |       | 1.5   | mA   |
| Ci                          | Control inputs | $V_{I} = 2.5 \text{ V or } 0.5 \text{ V}$                                                 |                                                            |     | 4.5                   |       |       |       |       |       | pF   |
| Cio                         | A or B ports   | V <sub>O</sub> = 2.5 V or 0.5 V                                                           |                                                            |     | 10.5                  |       |       |       |       |       | pF   |

\* On products compliant to MIL-PRF-38535, this parameter does not apply.

<sup>†</sup> All typical values are at  $V_{CC}$  = 5 V.

<sup>‡</sup> This parameter is characterized, but not production tested.

 $\ensuremath{\$}$  The parameters  $I_{OZH}$  and  $I_{OZL}$  include the input leakage current.

<sup>¶</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

<sup>#</sup> This data sheet limit can vary among suppliers.

| This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND.



SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010

# timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

|                 |                          |                                                                 | V <sub>CC</sub> = 5 V,<br>T <sub>A</sub> = 25°C SN54ABT85 |     | BT853 | SN74A | BT853 | UNIT |    |
|-----------------|--------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-----|-------|-------|-------|------|----|
|                 |                          |                                                                 | MIN                                                       | MAX | MIN   | MAX   | MIN   | MAX  |    |
|                 |                          | LE high or low                                                  | 3.5                                                       |     | 3.5   |       | 3.5   |      |    |
| tw              | w Pulse duration         | CLR low                                                         | 4                                                         |     | 4     |       | 4     |      | ns |
|                 |                          | B or PARITY before $\overline{\text{LE}}\downarrow$             | 9.4†                                                      |     | 10.2  |       | 9.4†  |      |    |
| t <sub>su</sub> | Setup time               | $\overline{\text{CLR}}$ before $\overline{\text{LE}}\downarrow$ | 2                                                         |     | 2     |       | 2     |      | ns |
|                 | t <sub>h</sub> Hold time | B or PARITY after $\overline{\text{LE}}\downarrow$              | 0                                                         |     | 0     |       | 0     |      | 20 |
| ĥ               |                          | CLR after LE↓                                                   | 3                                                         |     | 3     |       | 3     |      | ns |

<sup>†</sup> This data sheet limit can vary among suppliers.

# switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM        | TO               |      | <sub>CC</sub> = 5 V,<br><sub>A</sub> = 25°C | SN54A            | BT853 | SN74A            | BT853  | UNIT |
|------------------|-------------|------------------|------|---------------------------------------------|------------------|-------|------------------|--------|------|
|                  | (INPUT)     | (OUTPUT)         | MIN  | TYP MAX                                     | MIN              | MAX   | MIN              | MAX    |      |
| t <sub>PLH</sub> | A as D      | D er A           | 1.2  | 4.8                                         | 1.2              | 6.4   | 1.2              | 5.3    |      |
| t <sub>PHL</sub> | A or B      | B or A           | 1    | 4.8 <sup>†</sup>                            | 1                | 5.4   | 1                | 5.3†   | ns   |
| t <sub>PLH</sub> |             |                  | 2.1  | 9.5                                         | 2.1              | 13.3  | 2.1              | 11.2   |      |
| t <sub>PHL</sub> | A           | PARITY           | 2.5  | 9.7                                         | 2.5              | 11    | 2.5              | 11     | ns   |
| t <sub>PLH</sub> |             |                  | 1.8  | 8.5                                         | 1.8              | 13.6  | 1.8              | 10.5   |      |
| t <sub>PHL</sub> | OEA or OEB  | PARITY           | 2.3  | 8.6                                         | 2.3              | 11.7  | 2.3              | 10     | ns   |
| t <sub>PLH</sub> | CLR         | ERR              | 1    | 5.5                                         | 1                | 6.3   | 1                | 6.2    | ns   |
| t <sub>PLH</sub> | TE          | <b>FDD</b>       | 1.8  | 5.1                                         | 1.8              | 6.1   | 1.8              | 6      |      |
| t <sub>PHL</sub> | LE          | ERR              | 1†   | 5.8                                         | 1†               | 6.7   | 1                | 6.6    | ns   |
| t <sub>PLH</sub> | B or PARITY | ERR              | 2    | 10.1                                        | 2                | 11.8  | 2                | 11.7   | ns   |
| t <sub>PHL</sub> | DOFFANIT    | Enn              | 2.2† | 11.5                                        | 2.2†             | 12.9  | 2.2†             | 12.8   | 115  |
| t <sub>PZH</sub> |             |                  | 1    | 5.8 <sup>†</sup>                            | 1                | 8.8   | 1                | 6.7†   |      |
| t <sub>PZL</sub> | OEA or OEB  | A or B or PARITY | 1.5† | 5.8                                         | 1.5†             | 9.8   | 1.5†             | 6.7    | ns   |
| t <sub>PHZ</sub> |             | A or B or PARITY | 1.8† | 7.3                                         | 1.8 <sup>†</sup> | 9.5   | 1.8 <sup>†</sup> | 7.9    | ne   |
| t <sub>PLZ</sub> | OLA OF OED  |                  | 2.1† | 7.2                                         | 2.1†             | 8.2   | 2.1†             | 8.1 ns |      |

<sup>†</sup> This data sheet limit can vary among suppliers.



SCBS198G - FEBRUARY 1991 - REVISED OCTOBER 2010



### PARAMETER MEASUREMENT INFORMATION

NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms





www.ti.com

5-Sep-2011

### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan <sup>(2)</sup>    | Lead/<br>Ball Finish | MSL Peak Temp <sup>(3)</sup> | Samples<br>(Requires Login) |
|------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------|
| 5962-9674601Q3A  | ACTIVE                | LCCC         | FK                 | 28   | 1           | TBD                        | Call TI              | Call TI                      |                             |
| 5962-9674601QKA  | ACTIVE                | CFP          | W                  | 24   | 1           | TBD                        | Call TI              | Call TI                      |                             |
| 5962-9674601QLA  | ACTIVE                | CDIP         | JT                 | 24   | 1           | TBD                        | Call TI              | Call TI                      |                             |
| SN74ABT853DBLE   | OBSOLETE              | SSOP         | DB                 | 24   |             | TBD                        | Call TI              | Call TI                      |                             |
| SN74ABT853DW     | ACTIVE                | SOIC         | DW                 | 24   | 25          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           |                             |
| SN74ABT853DWE4   | ACTIVE                | SOIC         | DW                 | 24   | 25          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           |                             |
| SN74ABT853DWG4   | ACTIVE                | SOIC         | DW                 | 24   | 25          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           |                             |
| SN74ABT853DWR    | ACTIVE                | SOIC         | DW                 | 24   | 2000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           |                             |
| SN74ABT853DWRE4  | ACTIVE                | SOIC         | DW                 | 24   | 2000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           |                             |
| SN74ABT853DWRG4  | ACTIVE                | SOIC         | DW                 | 24   | 2000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           |                             |
| SN74ABT853NT     | ACTIVE                | PDIP         | NT                 | 24   | 15          | Pb-Free (RoHS)             | CU NIPDAU            | N / A for Pkg Type           |                             |
| SN74ABT853NTE4   | ACTIVE                | PDIP         | NT                 | 24   | 15          | Pb-Free (RoHS)             | CU NIPDAU            | N / A for Pkg Type           |                             |
| SN74ABT853PWLE   | OBSOLETE              | TSSOP        | PW                 | 24   |             | TBD                        | Call TI              | Call TI                      |                             |
| SNJ54ABT853FK    | ACTIVE                | LCCC         | FK                 | 28   | 1           | TBD                        | POST-PLATE           | N / A for Pkg Type           |                             |
| SNJ54ABT853JT    | ACTIVE                | CDIP         | JT                 | 24   | 1           | TBD                        | A42                  | N / A for Pkg Type           |                             |
| SNJ54ABT853W     | ACTIVE                | CFP          | W                  | 24   | 1           | TBD                        | A42                  | N / A for Pkg Type           |                             |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

## PACKAGE OPTION ADDENDUM



www.ti.com

5-Sep-2011

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and pa

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54ABT853, SN74ABT853 :

• Catalog: SN74ABT853

• Military: SN54ABT853

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

## PACKAGE MATERIALS INFORMATION

www.ti.com

### TAPE AND REEL INFORMATION

### REEL DIMENSIONS

TEXAS INSTRUMENTS





#### TAPE DIMENSIONS



| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

TAPE AND REEL INFORMATION

\*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74ABT853DWR | SOIC            | DW                 | 24 | 2000 | 330.0                    | 24.4                     | 10.75      | 15.7       | 2.7        | 12.0       | 24.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

## PACKAGE MATERIALS INFORMATION

14-Jul-2012



\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74ABT853DWR | SOIC         | DW              | 24   | 2000 | 367.0       | 367.0      | 45.0        |



### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)     | Lead finish/<br>Ball material | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5)                  | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|---------------------|-------------------------------|----------------------|--------------|------------------------------------------|---------|
| 5962-9674601Q3A  | ACTIVE        | LCCC         | FK                 | 28   | 1              | Non-RoHS<br>& Green | (6)<br>SNPB                   | N / A for Pkg Type   | -55 to 125   | 5962-<br>9674601Q3A<br>SNJ54ABT<br>853FK | Samples |
| SN74ABT853DW     | ACTIVE        | SOIC         | DW                 | 24   | 25             | RoHS & Green        | NIPDAU                        | Level-1-260C-UNLIM   | -40 to 85    | ABT853                                   | Samples |
| SN74ABT853DWR    | ACTIVE        | SOIC         | DW                 | 24   | 2000           | RoHS & Green        | NIPDAU                        | Level-1-260C-UNLIM   | -40 to 85    | ABT853                                   | Samples |
| SNJ54ABT853FK    | ACTIVE        | LCCC         | FK                 | 28   | 1              | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type   | -55 to 125   | 5962-<br>9674601Q3A<br>SNJ54ABT<br>853FK | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.



## PACKAGE OPTION ADDENDUM

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54ABT853, SN74ABT853 :

- Catalog : SN74ABT853
- Military : SN54ABT853

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

## PACKAGE MATERIALS INFORMATION

**P1** 

(mm)

12.0

2.7

w

(mm)

24.0

Pin1

Quadrant

Q1

Texas **NSTRUMENTS** 

SN74ABT853DWR

SOIC

DW

www.ti.com

### **TAPE AND REEL INFORMATION**





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



330.0

24.4

10.75

15.7

| All dimensions are nominal |   |                    |  |                          |                          |       |            |            |
|----------------------------|---|--------------------|--|--------------------------|--------------------------|-------|------------|------------|
| Device I                   | 0 | Package<br>Drawing |  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | · · · | B0<br>(mm) | K0<br>(mm) |

24

2000



www.ti.com

## PACKAGE MATERIALS INFORMATION

5-Jan-2022



\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74ABT853DWR | SOIC         | DW              | 24   | 2000 | 350.0       | 350.0      | 43.0        |



www.ti.com

5-Jan-2022

### TUBE



#### \*All dimensions are nominal

| Device       | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|--------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| SN74ABT853DW | DW           | SOIC         | 24   | 25  | 506.98 | 12.7   | 4826   | 6.6    |

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N\*\*) 28 TERMINAL SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.



## LAND PATTERN DATA



NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated