SPDT, 1 Ω R_{ON} Switch The NLAS5123 is a low R_{ON} SPDT analog switch. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS5123 can handle a balanced microphone/speaker/ringtone generator in a monophone mode. The device contains a break-before-make (BBM) feature. #### **Features** - Single Supply Operation: 1.65 V to 5.5 V V_{CC} - Function Directly from LiON Battery - R_{ON} Typical = 1.0 Ω @ V_{CC} = 4.5 V - Low Static Power - These are Pb-Free Devices #### **Typical Applications** - Cell Phone Speaker/Microphone Switching - Ringtone-Chip/Amplifier Switching - Stereo Balanced (Push-Pull) Switching # **Important Information** - Continuous Current Rating Through each Switch ±300 mA - 1.2 x 1.0 x 0.4P mm 6-Lead Thin DFN Package # ON Semiconductor® http://onsemi.com # MARKING DIAGRAMS #### WDFN6 MN SUFFIX CASE 506AS W = Specific Device Code M = Date Code ■ = Pb-Free Device #### UDFN6 MU SUFFIX CASE 517AA X = Specific Device Code M = Date Code = Pb-Free Device #### **PIN ASSIGNMENTS** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. Figure 1. Input Equivalent Circuit #### **PIN DESCRIPTION** | Pin Name | Description | |-------------|---------------| | NC, NO, COM | Data Ports | | IN | Control Input | #### **TRUTH TABLE** | Control Input | Function | |---------------|---------------------| | L | NC Connected to COM | | Н | NO Connected to COM | H = HIGH Logic Level. L = LOW Logic Level. #### **MAXIMUM RATINGS** | Symbol | Rating | Value | Unit | |----------------------|---|------------------------------|------| | V _{CC} | Positive DC Supply Voltage | −0.5 to +6.0 | V | | V _{IS} | Analog Input Voltage (V _{NO} , V _{NC} , or V _{COM}) | -0.5 to V _{CC} +0.5 | V | | V _{IN} | Digital Select Input Voltage | −0.5 to +6.0 | V | | I _{anl1} | Continuous DC Current from COM to NC/NO | ±300 | mA | | I _{anl-pk1} | Peak Current from COM to NC/NO, 10 Duty Cycles (Note 1) | ±500 | mA | | I _{clmp} | Continuous DC Current into COM/NC/NO with respect to V _{CC} or GND | ±100 | mA | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Defined as 10% ON, 90% off duty cycle. # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Rating | Min | Max | Unit | | |---------------------------------|------------------------------------|--|------|-----------------|------| | V _{CC} | Positive DC Supply Voltage | | 1.65 | 5.5 | V | | V _{IS} | Analog Input Voltage (NC, NO, COM) | | 0 | V _{CC} | V | | V _{IN} | Digital Select Input Voltage (IN) | | 0 | V _{CC} | V | | T _A | Operating Temperature Range | | -40 | 85 | °C | | t _r , t _f | Input Rise or Fall Time, SELECT | V _{CC} = 3.0 V
V _{CC} = 5.5 V | | 20
10 | ns/V | #### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | Ţ | $T_A = +25^{\circ}C$ | | T _A = -40° | | | |------------------|---|--|-----------------|------|----------------------|------|-----------------------|------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Unit | | V _{IH} | HIGH Level
Input Voltage | | 2.7
4.5 | | | | 2.0
2.4 | | V | | V _{IL} | LOW Level
Input Voltage | | 2.7
4.5 | | | | | 0.6
0.8 | V | | I _{IN} | Input Leakage Current | $0 \le V_{IN} \le 5.5 V$ | 0-5.5 | | | ±0.1 | | ±1 | μΑ | | I _{OFF} | OFF State Leakage
Current (Note 7) | $0 \le NO, NC, COM \le V_{CC}$ | 5.5 | -2.0 | | +2.0 | | ±20 | nA | | I _{ON} | ON State Leakage
Current (Note 7) | $0 \le NO, NC, COM \le V_{CC}$ | 5.5 | -4.0 | | +4.0 | | ±40 | nA | | R _{ON} | Switch On Resistance
(Note 2) | I _O = 100 mA,
V _{IS} = 0 V to V _{CC} | 2.7 | | | 1.7 | | 2.0 | Ω | | | | I _O = 100 mA,
V _{IS} = 0 V to V _{CC} | 4.5 | | | 1.0 | | 1.2 | | | I _{CC} | Quiescent Supply
Current
All Channels ON or OFF | V _{IN} = V _{CC} or GND, I _{OUT} = 0 | 5.5 | | | 0.5 | | 1.0 | μΑ | ### Analog Signal Range | ΔR _{ON} | On Resistance Match
Between Channels
(Notes 2, 3, 4) | I _A = 100 mA,
V _{IS} = 1.5 V
I _A = 100 mA,
V _{IS} = 2.5 V | 2.7
4.5 | 0.15
0.12 | | 0.15 | Ω | |-------------------|--|--|------------|--------------|--|------|---| | R _{flat} | On Resistance
Flatness (Notes 2, 3, 5) | I _A = 100 mA,
V _{IS} = 0 V to V _{CC} | 2.7 | 0.4 | | | Ω | | | 1 1000 (1000 2, 0, 0) | $V_{IS} = 0 \text{ V to } V_{CC}$ $I_A = 100 \text{ mA},$ $V_{IS} = 0 \text{ V to } V_{CC}$ | 4.5 | 0.3 | | 0.4 | | ^{2.} Measured by the voltage drop between NC/NO and COM pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (NO, NC, COM). Parameter is characterized but not tested in production. ΔR_{ON} = R_{ON} max – R_{ON} min measured at identical V_{CC}, temperature and voltage levels. ^{5.} Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions. ^{6.} Guaranteed by Design. ^{7.} This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). #### **AC ELECTRICAL CHARACTERISTICS** | | | | V _{CC} | T _A = +25°C | | T _A = -40°0 | C to +85°C | | Figure | | |--------------------------------------|---|---|-----------------|------------------------|----------|------------------------|------------|----------|--------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Unit | # | | t _{PHL}
t _{PLH} | Propagation Delay
Bus-to-Bus (Note 9) | V _{IN} = V _{IH} or V _{IL} | 2.7
4.5 | | | 2.0
0.3 | | | ns | | | t _{ON} | Output Enable Time
Turn On Time
(COM to NO or NC) | $\begin{aligned} &V_{IS} = 1.5 \text{ V}, \\ &R_L = 50 \ \Omega, \ C_L = 35 \text{ pF} \\ &V_{IS} = 3.0 \text{ V}, \\ &R_L = 50 \ \Omega, \ C_L = 35 \text{ pF} \end{aligned}$ | 2.7
4.5 | | | 30
20 | | 35
25 | ns | 3, 4 | | t _{OFF} | Output Disable Time
Turn Off Time
(COM to NO, NC) | $\begin{aligned} & \text{V}_{\text{IS}} = \text{1.5V}, \\ & \text{R}_{\text{L}} = \text{50 } \Omega, \text{C}_{\text{L}} = \text{35 pF} \\ & \text{V}_{\text{IS}} = \text{3.0 V}, \\ & \text{R}_{\text{L}} = \text{50 } \Omega, \text{C}_{\text{L}} = \text{35 pF} \end{aligned}$ | 2.7
4.5 | | | 20
15 | | 25
20 | ns | 3, 4 | | t _{BBM} | Break Before Make Time
(Note 8) | $V_{IS} = 1.5V$, $R_L = 50 \ \Omega$, $C_L = 35 \ pF$ | 2.7
4.5 | 0.5 | | | 0.5
0.5 | | ns | 2 | | Q | Charge Injection (Note 8) | C_L = 1.0 nF, V_{GEN} = 0 V R_{GEN} = 0 Ω | 2.7
4.5 | 0.5 | 26
48 | | 0.5 | | рC | 6 | | O _{IRR} | Off Isolation (Note 10) | $R_L = 50 \Omega$
f = 1.0 MHz | 2.7 –
5.5 | | -62 | | | | dB | 5 | | X _{talk} | Crosstalk | $R_L = 50 \Omega$
f = 1.0 MHz | 2.7 –
5.5 | | -70 | | | | dB | 7 | | BW | -3 dB Bandwidth | R _L = 50 Ω | 2.7 –
5.5 | | 55 | | | | MHz | 8 | | THD | Total Harmonic
Distortion (Note 8) | $R_L = 600 \Omega$
0.5 V_{P-P}
f = 20 Hz to 20 kHz | 2.7 –
5.5 | | 0.012 | | | | % | 9 | ^{8.} Guaranteed by Design. # **CAPACITANCE** (Note 11) | Symbol | Parameter | Test Conditions | Тур | Max | Unit | |--------------------|---|------------------------------------|-----|-----|------| | C _{IN} | Select Pin Input Capacitance | V _{CC} = 0 V, f = 1 MHz | 2.0 | | pF | | C _{NC/NO} | NC, NO Port Off Capacitance | V _{CC} = 4.5 V, f = 1 MHz | 20 | | pF | | C _{COM} | COM Port Capacitance when Switch is Enabled | V _{CC} = 4.5 V, f = 1 MHz | 55 | | pF | $[\]overline{11.T_A}$ = +25°C, f = 1 MHz, Capacitance is characterized but not tested in production. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). 10. Off Isolation = 20 log₁₀ [V_{COM}/V_{NO,NC}]. Figure 2. t_{BBM} (Time Break-Before-Make) Figure 3. t_{ON}/t_{OFF} Figure 4. t_{ON}/t_{OFF} Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $V_{\rm ISO}$, Bandwidth and $V_{\rm ONL}$ are independent of the input signal direction. $$V_{ISO}$$ = Off Channel Isolation = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz $$V_{ONL}$$ = On Channel Loss = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz to 50 MHz Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL} Figure 6. Charge Injection: (Q) Figure 7. Cross Talk vs. Frequency @ V_{CC} = 4.5 V Figure 8. Bandwidth vs. Frequency Figure 9. Total Harmonic Distortion Figure 10. On–Resistance vs. Input Voltage @ V_{CC} = 2.7 V Figure 11. On–Resistance vs. Input Voltage @ V_{CC} = 4.5 V Figure 12. On-Resistance vs. Input Voltage # **DEVICE ORDERING INFORMATION** | | | Devi | ce Nomenc | clature | | | | |---------------------|----------------------|------------|--------------------|-------------------|-----------------------|--------------------|-------------------------------| | Device Order Number | Circuit
Indicator | Technology | Device
Function | Package
Suffix | Tape & Reel
Suffix | Package Type | Tape & Reel Size [†] | | NLAS5123MNR2G | NL | AS | 5123 | MN | 2 | WDFN6
(Pb-Free) | 3000 / Tape & Reel | | NLAS5123MUR2G | NL | AS | 5123 | MU | 2 | UDFN6
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON21223D | Electronic versions are uncontrolled except when accessed directly from
Printed versions are uncontrolled except when stamped "CONTROLLED (| | |------------------|-------------------------|--|-------------| | DESCRIPTION: | WDFN6, 1.2 X 1.0, 0.4 P | | PAGE 1 OF 1 | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 6X b 0.10 С A B 0.05 С NOTE 3 е **BOTTOM VIEW** **DATE 03 SEP 2010** - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED - PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | | | | | |-----|-------------|------|--|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | | Α | 0.45 | 0.55 | | | | | | | | A1 | 0.00 | 0.05 | | | | | | | | А3 | 0.127 | REF | | | | | | | | b | 0.15 | 0.25 | | | | | | | | D | 1.20 | BSC | | | | | | | | Е | 1.00 | BSC | | | | | | | | е | 0.40 | BSC | | | | | | | | L | 0.30 | 0.40 | | | | | | | | L1 | 0.00 | 0.15 | | | | | | | | 12 | 0.40 | 0.50 | | | | | | | #### **GENERIC** MARKING DIAGRAM* = Specific Device Code = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. # **MOUNTING FOOTPRINT*** DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON22068D | Electronic versions are uncontrolled except when accessed directly from the Document
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | |------------------|---------------------------|---|-------------|--|--|--| | DESCRIPTION: | 6 PIN UDFN, 1.2X1.0, 0.4P | | PAGE 1 OF 1 | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative