

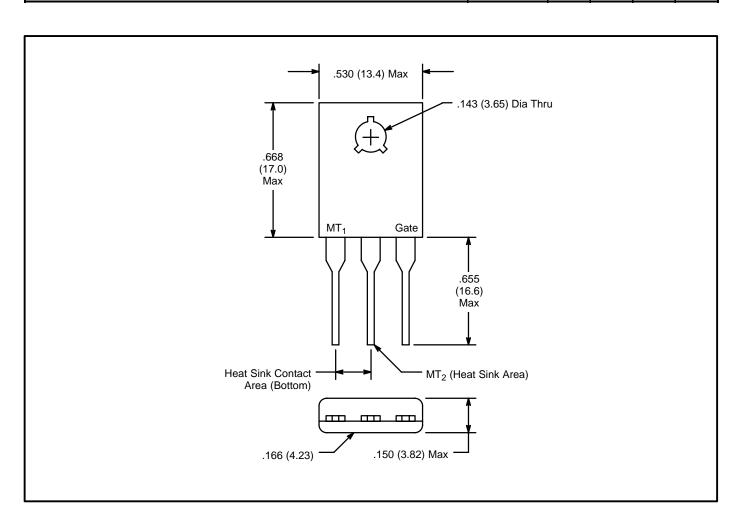
NTE5621 thru NTE5627 TRIAC – 10 Amp

Description:

The NTE5621 through NTE5627 TRIACs are designed primarily for full—wave AC control applications, such as light dimmers, motor controls, heating controls, and power supplies; or wherever full—wave silicon gate controlled solid—state devices are needed. TRIAC type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

Features:

- All Diffused and Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability.
- Gate Triggering Guaranteed in Two Modes


Absolute Maximum Ratings:

Repetitive Peak Off–State Voltage (T _J = +100°C, Note 2), V _{DRM}	
NTE5621	25V
NTE5622	50V
NTE5623	100V
NTE5627	500V
On–State Current RMS ($T_C = +75^{\circ}C$), $I_{T(RMS)}$	10A
Peak Surge Current (One Full Cycle, 60Hz, $T_J = -40^{\circ}$ to +100°C), I_{TSM}	
Circuit Fusing Considerations ($T_J = -40^\circ$ to $+100^\circ$ C, $t = 1.0$ to 8.3 ms), I^2 t	40A ² s
Peak Gate Power, P _{GM}	10W
Average Gate Power, P _{G(AV)}	0.5W
Peak Gate Current, I _{GM}	2A
Operating Junction Temperature Range, T _J	
Storage Temperature Range, T _{stg}	0° to +150°C
Mounting Torque (6–32 Screw, Note 3)	12in. lb.
Thermal Resistance, Junction–to–Case, R _{thJC}	2°C/W
Thermal Resistance, Case–to–Ambient, R _{thJA}	50°C/W

- Note 1. NTE5622 and NTE5627 are discontinued devices and no longer available.
- Note 2. Ratings apply for open gate conditions. Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage.
- Note 3. Torque rating applies with use of torque washer. Mounting torque in excess of 8 in. lbs. does not appreciably lower case—to—sink thermal resistance. Anode lead and heatsink contact pad are common.
- Note 4. For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +230°C.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Min	Тур	Max	Unit
Peak Blocking Current (Either Direction) (Rated V _{DRM} , T _J = 100°C, Gate Open)	I _{DRM}	_	_	2	mA
On-State Voltage (Either Direction) (I _{TM} = 14A Peak)	V_{TM}	_	1.3	1.8	V
Gate Trigger Current (Continuous DC) (Main Terminal Voltage = 12V, $R_L = 100\Omega$) MT ₂ (+), G (+); MT ₂ (-), G (-)	I _{GT}	_	_	50	mA
Gate Trigger Voltage (Continuous DC) (Main Terminal Voltage = 12V, R _L = 100Ω) MT ₂ (+), G (+); MT ₂ (-), G (-)	V _{GT}	_	0.9	2.0	V
Gate Trigger Voltage (Continuous DC – All Modes) (Main Terminal Voltage = Rated V_{DRM} , $R_L = 100\Omega$, $T_J = +100^{\circ}C$)	V_{GD}	0.2	_	_	V
Holding Current (Either Direction) (Main Terminal Voltage = 12Vdc, Gate Open, I _T = 100mA)	I _H	_	-	50	mA
Turn–On Time $(I_{TM} = 14A, I_{GT} = 100mA)$	t _{on}	_	1.5	_	μs
Blocking Voltage Application Rate at Commutation (At V_{DRM} , $T_J = +75^{\circ}C$, Gate Open)	dv/dt	_	5	_	V/μs

