

MOSFET – Dual, N-Channel, POWERTRENCH®

20 V, 3.8 A, 66 m Ω

FDME1024NZT

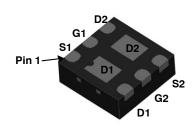
Description

This Device is Designed Specifically as a Single Package Solution for Dual Switching Requirement in cellular handset and other Ultra-Portable Applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses.

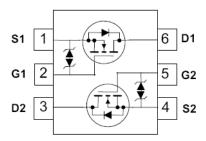
The MicroFET™ 1.6x1.6 Thin package offers Exceptional Thermal Performance for it's physical size and is well suited to switching and linear mode applications.

Features

- Max $R_{DS(on)} = 66 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 3.4 \text{ A}$
- Max $R_{DS(on)} = 86 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_D = 2.9 \text{ A}$
- Max $R_{DS(on)} = 113 \text{ m}\Omega$ at $V_{GS} = 1.8 \text{ V}$, $I_D = 2.5 \text{ A}$
- Max $R_{DS(on)} = 160 \text{ m}\Omega$ at $V_{GS} = 1.5 \text{ V}$, $I_D = 2.1 \text{ A}$
- Low Profile 0.55 mm Maximum in the New Package MicroFET 1.6x1.6 Thin
- Free From Halogenated Compounds and Antimony Oxides
- HBM ESD Protection Level > 1600 V (Note 3)
- These Devices is Pb-Free, Halide Free and is RoHS Compliant


Typical Applications

- Baseband Switch
- Load Switch


ABSOLUTE MAXIMUM RATINGS T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Unit
V_{DS}	Drain to Source Voltage	20	V
V_{GS}	Gate to Source Voltage	±8	V
I _D	Drain Current T _A = 25°C - Continuous (Note 1a) - Pulsed	3.8 6	Α
P _D	Power Dissipation Single Operation $T_A = 25$ °C (Note 1a)	1.4	W
	Power Dissipation Single Operation T _A = 25°C (Note 1b)	0.6	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MicroFET UDFN6 1.6X1.6, 0.5P CASE 517DW

MARKING DIAGRAM

&Z&2&K 4T O

&Z = Assembly Plant Code

&2 = 2-Digit Date-Code (Year & Week)&K = 2-Digit Lot Traceability Code

4T = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDME1024NZT	UDFN-6 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance for, Junction to Ambient (Single Operation) (Note 1a)	90	°C/W
$R_{\theta JA}$	Thermal Resistance for, Junction to Ambient (Single Operation) (Note 1b)	195	°C/W

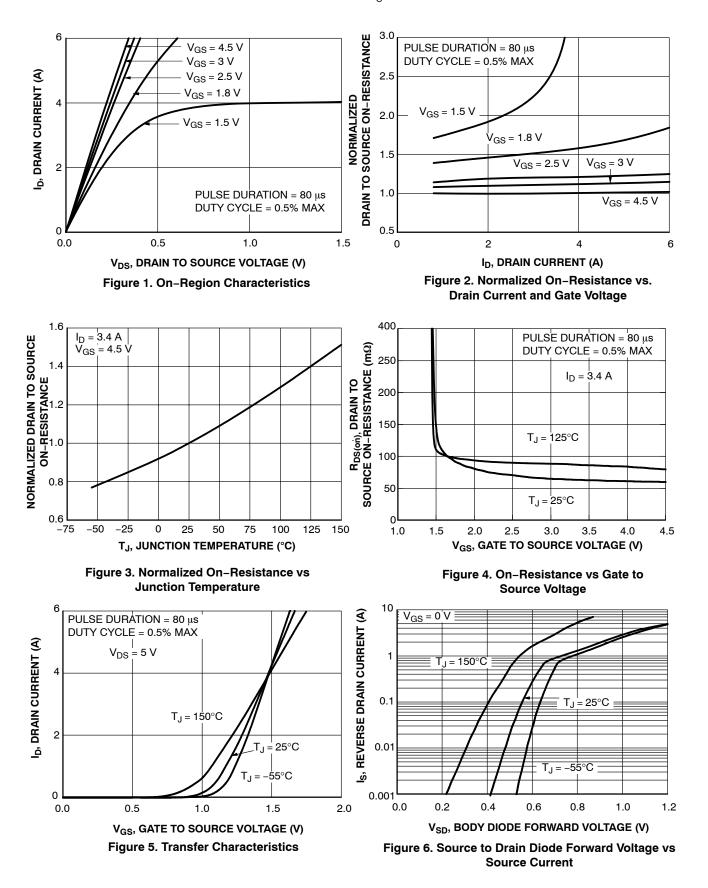
ELECTRICAL CHARACTERISTICS T_{.1} = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Chara	cteristics	·	-	-	-	-
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20	-	_	V
ΔBV _{DSS} ΔΤ _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	16	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±10	μΑ
On Charac	cteristics	•	_		-	
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.4	0.7	1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	-3	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 3.4 A V _{GS} = 2.5 V, I _D = 2.9 A, V _{GS} = 1.8 V, I _D = 2.5 A, V _{GS} = 1.5 V, I _D = 2.1 A, V _{GS} = 4.5 V, I _D = 3.4 A, T _J = 125°C	- - - -	55 68 85 106 76	66 86 113 160 112	mΩ
9FS	Forward Transconductance	V _{DS} = 4.5 V, I _D = 3.4 A	-	9	-	S
Oynamic (Characteristics	•	_		-	
C _{iss}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	-	225	300	pF
C _{oss}	Output Capacitance		-	40	55	pF
C _{rss}	Reverse Transfer Capacitance		-	25	40	pF
witching	Characteristics	•				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 10 \text{ V}, I_{D} = 1 \text{ A},$	-	4.5	10	ns
t _r	Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$	_	2	10	ns
$t_{d(off)}$	Turn-Off Delay Time		_	15	27	ns
t _f	Fall Time		_	1.7	10	ns
Qg	Total Gate Charge	V _{DD} = 10 V, I _D = 3.4 A, V _{GS} = 4.5 V	-	3	4.2	nC
Q _{gs}	Gate to Source Gate Charge		-	0.4	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	0.6	-	nC
)rain–Soเ	urce Diode Characteristics and Maximum	Ratings				
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.9 A (Note 2)	-	0.7	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 3.4 A, di/dt = 100 A/μs	_	8.5	17	ns
Q _{rr}	Reverse Recovery Charge	7	_	1.4	10	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


a).90 $^{\circ}$ C/W when mounted on a 1 in² pad of 2 oz copper.

b).195 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width $\leq 300~\mu s,~Duty~Cycle \leq 2.0\%$
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS T_C = 25°C unless otherwise noted

TYPICAL CHARACTERISTICS $T_C = 25^{\circ}C$ unless otherwise noted (CONTINUED)

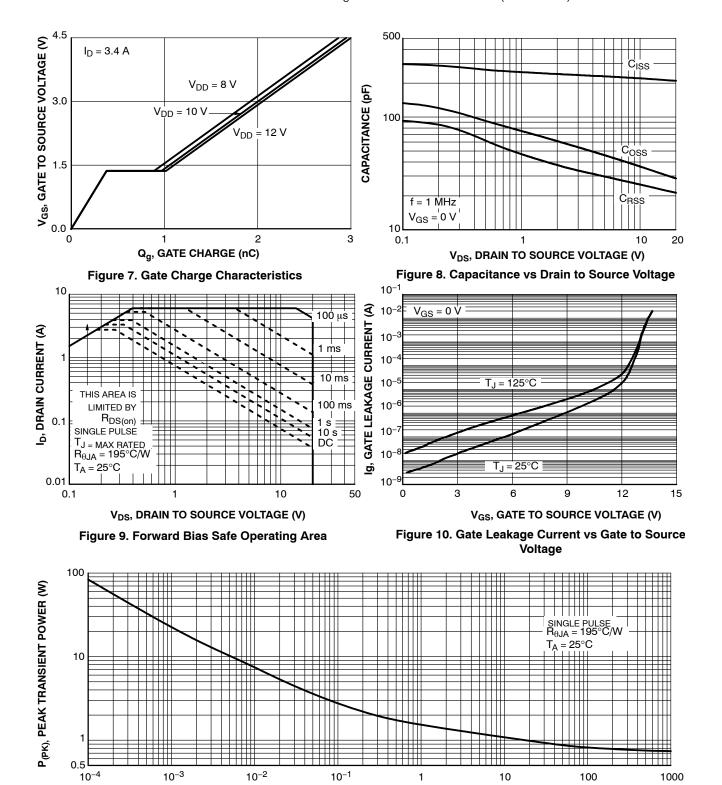
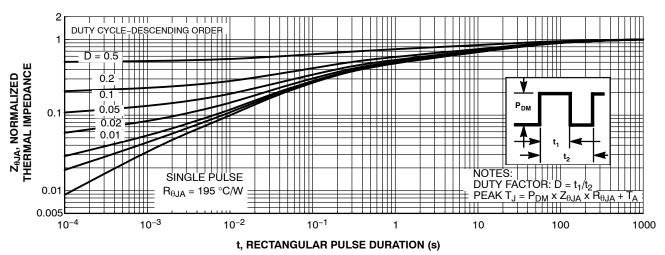
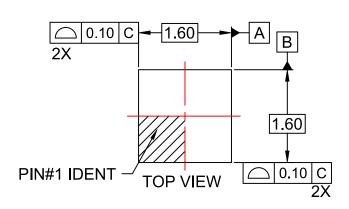
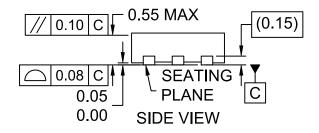


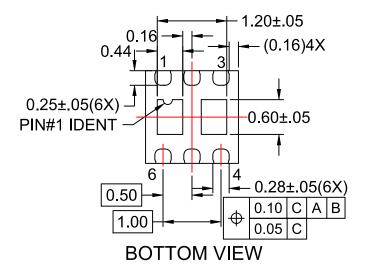
Figure 11. Single Pulse Maximum Power Dissipation

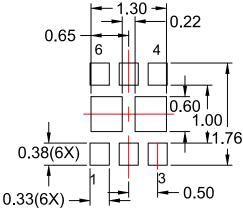
t, PULSE WIDTH (s)

TYPICAL CHARACTERISTICS $T_C = 25$ °C unless otherwise noted (CONTINUED)


Figure 12. Junction-to-Ambient Transient Thermal Response Curve


POWERTRENCH is registered trademark and MicroFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


UDFN6 1.6x1.6, 0.5PCASE 517DW
ISSUE O

DATE 31 OCT 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13701G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 1.6x1.6, 0.5P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales