2.5V/3.3V SiGe Differential 2 X 2 Crosspoint Switch with Output Level Select

The NBSG72A is a high-bandwidth fully differential 2 X 2 crosspoint switch with Output Level Select (OLS) capabilities. This is a part of the GigaCommTM family of high performance Silicon Germanium products. The device is housed in a low profile 3 X 3 mm 16-pin QFN package.

Differential inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS input is used to program the peak-to-peak output amplitude between 0 mV and 800 mV in five discrete steps. The SELECT inputs are single-ended and can be driven with either LVECL or LVCMOS/LVTTL input levels.

- Maximum Input Clock Frequency > 7 GHz Typical
- Maximum Input Data Rate > 7 Gb/s Typical
- 200 ps Typical Propagation Delay (OLS = FLOAT)
- 55/45 ps Typical Rise/Fall Times (OLS = FLOAT)
- Selectable Swing PECL Output with Operating Range: $V_{CC} = 2.375$ V to 3.465 V with $V_{EE} = 0$ V
- Selectable Swing NECL Output with NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- Selectable Output Levels (0 mV, 200 mV, 400 mV, 600 mV or 800 mV Peak-to-Peak Output)
- 50 Ω Internal Input Termination Resistors
- Single–Ended LVECL or LVCMOS/LVTTL Select Inputs (SELA, SELB)
- Pb–Free Package is Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

QFN-16 MN SUFFIX CASE 485G

A= Assembly LocationL= Wafer LotY= YearW= Work Week

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

Figure 1. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin No.	Name	I/O	Description
1	VTD0	-	Common Internal 50 Ω Termination Pin for D0 and $\overline{\text{D0}}$ Input. See Table 4. (Note 1)
2	DO	LVDS, CML, ECL, LVTTL, LVCMOS Input	Inverted Differential Input 0.
3	D0	LVDS, CML, ECL, LVTTL, LVCMOS Input	Noninverted Differential Input 0.
4	SELA	LVECL, LVCMOS Input	Select Logic Input A. Internal 75 k Ω Pulldown to $V_{EE}.$
5	V _{EE}	-	Negative Supply. All V_{EE} Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
6	DT	LVDS, CML, ECL, LVTTL, LVCMOS Input	Inverted Differential Input 1.
7	D1	LVDS, CML, ECL, LVTTL, LVCMOS Input	Noninverted Differential Input 1.
8	VTD1	_	Common Internal 50 Ω Termination Pin for D1 and $\overline{D1}$ Input. See Table 4. (Note 1)
9	SELB	LVECL, LVCMOS Input	Select Logic Input B. Internal 75 k Ω Pulldown to V _{EE} .
10	Q1	RSECL Output	Noninverted Differential Output.
11	Q1	RSECL Output	Inverted Differential Output.
12	V _{CC}	_	Positive Supply. All V_{CC} Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
13	OLS (Note 2)	Input	Input Pin for Output Level Select (OLS) See Table 3.
14	Q0	RSECL Output	Noninverted Differential Output Typically Terminated with 50 Ω Resistor to V _{TT} = V _{CC} – 2.0 V.
15	Q0	RSECL Output	Inverted Differential Output Typically Terminated with 50 Ω Resistor to V _{TT} = V _{CC} – 2.0 V.
16	V _{CC}	-	Positive Supply. All V_{CC} Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
-	EP	-	Exposed Pad. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat-sinking conduit.

In the differential configuration when the input termination pins (VTD0, VTD1) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation.
 When an output level of 400 mV is desired and V_{CC} - V_{EE} > 3.0 V, 2 kΩ resistor should be connected from OLS pin to V_{EE}.

Table 2. TRUTH TABLE

SELA	SELB	Q0	Q1
LOW	LOW	D0	D0
HIGH	LOW	D1	D0
LOW	HIGH	D0	D1
HIGH	HIGH	D1	D1

Figure 2. Logic/Block Diagram

Table 3. OUTPUT LEVEL SELECT (OLS)

OLS	Output Amplitude (V _{OUTPP})	OLS Sensitivity
V _{CC}	800 mV	OLS – 75 mV
V _{CC} – 0.4 V	200 mV	OLS ± 150 mV
V _{CC} – 0.8 V	600 mV	OLS ± 100 mV
V _{CC} – 1.2 V	0	$OLS \pm 75 \text{ mV}$
V _{EE} (Note 3)	400 mV	OLS ± 100 mV
FLOAT	600 mV	N/A

3. When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE}.

Table 4. INTERFACING OPTIONS

Interfacing Options	Connections
CML	Connect VTD0 and VTD1 to V_{CC}
LVDS	VTD0 and VTD1 Should Be Left Floating.
AC-COUPLED	Bias VTD0 and VTD1 Inputs within Common Mode Range (VIHCMR)
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVCMOS / LVTTL	The external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL and $V_{CC}/2$ for LVCMOS Inputs.

Table 5. ATTRIBUTES

Characteri	Value						
Internal Input Pulldown Resistor (S	75 kΩ						
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 50 V > 1 kV					
Moisture Sensitivity (Note 1)		Level 1					
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in					
Transistor Count		436					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

1. For additional information, see Application Note AND8003/D.

Table 6. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	$V_{EE} = 0 V$		3.6	V
V_{EE}	Negative Power Supply	$V_{CC} = 0 V$		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	3.6 -3.6	V V
V _{INPP}	Differential Input Voltage $ D_X - \overline{D_X} $	$\begin{array}{l} V_{EE}-V_{CC} \geq 2.8 \text{ V} \\ V_{EE}-V_{CC} < 2.8 \text{ V} \end{array}$		2.8 V _{CC} – V _{EE}	V
l _{out}	Output Current	Continuous Surge		25 50	mA mA
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 2)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	QFN-16	4	°C/W
T _{sol}	Wave Solder	< 15 sec		225	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.2. JEDEC standard multilayer board – 1S2P (1 signal, 2 power).

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	40	55	65	40	55	65	40	55	65	mA
V _{OH}	Output HIGH Voltage (Note 4)	1460	1510	1560	1490	1540	1590	1515	1565	1615	mV
V _{OL}	Output LOW Voltage (Note 4) $(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 V)$ $(OLS = V_{EE})$	555 1235 775 1455 1005	705 1295 895 1505 1095	855 1355 1015 1555 1185	595 1270 810 1490 1040	745 1330 930 1540 1130	895 1390 1050 1590 1220	625 1295 840 1510 1065	775 1355 960 1560 1155	925 1415 1080 1610 1245	mV
V _{OUTPP}	$\begin{array}{c} \mbox{Output Voltage Amplitude} \\ (OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \ V) \\ (OLS = V_{CC} - 0.8 \ V, \ OLS = FLOAT) \\ (OLS = V_{CC} - 1.2 \ V) \\ (OLS = V_{EE}) \end{array}$	700 125 525 0 325	800 215 615 5 415		680 120 520 0 320	795 210 610 0 410		680 120 515 0 320	790 210 605 5 410		mV
V _{IH}	Input HIGH Voltage (Single–Ended) (Note 6) D0, D0, D1, D1	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 7) D0, D0, D1, D1	V_{EE}	V _{CC} - 1400*	V _{IH} – 150	V _{EE}	V _{CC} - 1400*	V _{IH} – 150	V _{EE}	V _{CC} - 1400*	V _{IH} – 150	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@V _{IH})		35	100		35	100		35	100	μA
IIL	Input LOW Current (@VIL)		20	100		20	100		20	100	μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

*Typicals used for testing purposes.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -0.965 V.
 All loading with 50 Ω to V_{CC} - 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

6. V_{IH} cannot exceed V_{CC} . 7. V_{IL} always $\geq V_{EE}$.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	40	55	65	40	55	65	40	55	65	mA
V _{OH}	Output HIGH Voltage (Note 9)	2260	2310	2360	2290	2340	2390	2315	2365	2415	mV
V _{OL}	Output LOW Voltage (Note 9) (OLS = V_{CC}) (OLS = $V_{CC} - 0.4$ V) (OLS = $V_{CC} - 0.8$ V, OLS = FLOAT) (OLS = $V_{CC} - 1.2$ V) **(OLS = V_{EE})	1320 2030 1550 2260 1785	1470 2090 1670 2310 1875	1620 2150 1790 2360 1965	1360 2065 1585 2290 1820	1510 2125 1705 2340 1910	1660 2185 1825 2390 2000	1390 2090 1615 2315 1850	1540 2150 1735 2365 1940	1690 2210 1855 2415 2030	mV
V _{OUTPP}	Output Amplitude Voltage $(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 V)$ $^{**}(OLS = V_{EE})$	715 130 550 0 345	815 220 640 0 435		705 125 545 0 340	805 215 635 0 430		690 125 540 0 335	800 215 630 0 425		mV
V _{IH}	Input HIGH Voltage (Single–Ended) (Note 11) D0, D0, D1, D1	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 12) D0, D0, D1, D1	V _{IH} – 2600	V _{CC} - 1400*	V _{IH} – 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} – 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} – 150	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	1.2		3.3	1.2		3.3	1.2		3.3	V
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@VIH)		35	100		35	100		35	100	μΑ
IIL	Input LOW Current (@VIL)		20	100		20	100		20	100	μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

*Typicals used for testing purposes. **When an output level of 400 mV is desired and $V_{CC} - V_{EE} > 3.0 \text{ V}$, a 2 k Ω resistor should be connected from OLS to V_{EE} . 8. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.165 V. 9. All loading with 50 Ω to $V_{CC} - 2.0 \text{ V}$. 10. V_{HCMR} min varies 1:1 with V_{EE} , V_{HCMR} max varies 1:1 with V_{CC} . The V_{HCMR} range is referenced to the most positive side of the differential input circael input signal.

11. V_{IH} cannot exceed V_{CC} . 12. V_{IL} always $\geq V_{EE}$.

			–40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	40	55	65	40	55	65	40	55	65	mA
V _{OH}	Output HIGH Voltage (Note 14)	-1040	-990	-840	-1010	-960	-910	-985	-935	-885	mV
V _{OL}	Output LOW Voltage (Note 14) $-3.465 \text{ V} \le \text{V}_{\text{EE}} \le -3.0 \text{ V}$										mV
	$(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 \text{ V})$ $(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 \text{ V})$	-1980 -1270 -1750 -1040	-1830 -1210 -1630 -990	-1680 -1150 -1510 -940	-1940 -1235 -1715 -1010	-1790 -1175 -1595 -960	-1640 -1115 -1475 -910	-1910 -1210 -1685 -985	-1760 -1150 -1565 -935	-1610 -1090 -1445 -885	
	$^{**}(OLS = V_{EE})$ -3.0 V < V _{EE} \leq -2.375 V	-1515	-1425	-1335	-1480	-1390	-1300	-1450	-1360	-1270	
	$(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 V)$ $(OLS = V_{EE})$	-1945 -1265 -1725 -1045 -1495	-1795 -1205 -1605 -995 -1405	-1645 -1145 -1485 -945 -1315	-1905 -1230 -1690 -1010 -1460	-1755 -1170 -1570 -960 -1370	-1605 -1110 -1450 -910 -1280	-1875 -1205 -1660 -990 -1435	-1725 -1145 -1540 -940 -1345	-1575 -1085 -1420 -890 -1255	
V _{OUTPP}	Output Voltage Amplitude										mV
	$\begin{array}{l} -3.465 \ V \leq V_{EE} \leq -3.0 \ V \\ (OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \ V) \\ (OLS = V_{CC} - 0.8 \ V, \ OLS = FLOAT) \\ (OLS = V_{CC} - 1.2 \ V) \\ *^*(OLS = V_{EE}) \end{array}$	715 130 550 0 345	815 220 640 0 435		705 125 545 0 340	805 215 635 0 430		690 125 540 0 335	800 215 630 0 425		
	$\begin{array}{l} -3.0 \; \text{V} < \text{V}_{\text{EE}} \; \leq \; -2.375 \; \text{V} \\ & (\text{OLS} = \text{V}_{\text{CC}}) \\ & (\text{OLS} = \text{V}_{\text{CC}} - 0.4 \; \text{V}) \\ & (\text{OLS} = \text{V}_{\text{CC}} - 0.8 \; \text{V}, \; \text{OLS} = \text{FLOAT}) \\ & (\text{OLS} = \text{V}_{\text{CC}} - 1.2 \; \text{V}) \\ & (\text{OLS} = \text{V}_{\text{EE}}) \end{array}$	700 125 525 0 325	800 215 615 5 415		690 120 520 0 320	795 210 610 0 410		680 120 515 0 320	790 210 605 5 410		
V _{IH}	Input HIGH Voltage (Single–Ended) (Note 16) D0, D0, D1, D1	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	V _{EE} + 1275	V _{CC} – 1000*	V _{CC}	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 17) D0, D0, D1, D1	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 15)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@VIH)		35	100		35	100		35	100	μΑ
I _{IL}	Input LOW Current (@VIL)		20	100		20	100		20	100	μA
I _{OLS}	$\begin{array}{l} \text{OLS Input Current (See Figure 9)} \\ & (\text{OLS} = \text{V}_{\text{CC}}) \\ & (\text{OLS} = \text{V}_{\text{CC}} - 0.4 \text{ V}) \\ & (\text{OLS} = \text{V}_{\text{CC}} - 0.8 \text{ V}, \text{OLS} = \text{FLOAT}) \\ & (\text{OLS} = \text{V}_{\text{CC}} - 1.2 \text{ V}) \\ & -3.0 \text{ V} < \text{V}_{\text{EE}} \leq -2.375 \text{ V} \end{array}$	-300	300 100 5 -100	900 300 100	-300	300 100 5 -100	900 300 100	-300	300 100 5 -100	900 300 100	μΑ
	$(OLS = V_{EE})$ $-3.465 \text{ V} \le \text{V}_{EE} \le -3.0 \text{ V}$ $*(OLS = V_{EE})$	-1000 -1500	-400 -600		-1000 -1500	-400 -600		-1000 -1500	-400 -600		

Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPU	UT $V_{CC} = 0$ V; $V_{EE} = -3.465$ V to -2.375 V (Note 13)
---	---

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

*Typicals used for testing purposes. **When an output level of 400 mV is desired and $V_{CC} - V_{EE} > 3.0 \text{ V}$, a 2 k Ω resistor should be connected from OLS to V_{EE} . 13. Input and output parameters vary 1:1 with V_{CC} . 14. All loading with 50 Ω to $V_{CC} - 2.0 \text{ V}$. 15. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

16. V_{IH} cannot exceed V_{CC} . 17. V_{IL} always $\geq V_{EE}$.

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude $f_{in} < 5 \text{ GHz}$ (Note 18) $f_{in} \leq 7 \text{ GHz}$	400 200	590 250		450 180	590 250		440 130	590 250		mV
t _{PLH}	Propagation Delay to Output Differential D0, D1 \rightarrow Q0, Q1 SELA, SELB \rightarrow Q0, Q1	170 190	205 265	255 350	170 190	205 265	255 350	170 190	210 265	260 350	ps
t _{PHL}	Propagation Delay to Output Differential D0, D1 \rightarrow Q0, Q1 SELA, SELB \rightarrow Q0, Q1	170 150	205 215	255 270	170 150	205 215	255 270	170 150	210 215	260 270	ps
t _{SKEW}	Duty Cycle Skew (Note 19) Within–Device Skew Device–to–Device Skew		5.0 5.0 15	25 25 50		5.0 5.0 15	25 25 50		5.0 5.0 15	25 25 50	ps
t _{JITTER}	$\begin{array}{l} \text{RMS Random Clock Jitter (Note 20)} \\ f_{\text{in}} \leq 7 \text{ GHz} \\ \text{Peak-to-Peak Data Dependent Jitter} \\ \text{(Note 21)} \\ f_{\text{in}} \leq 7 \text{ Gb/s} \end{array}$		0.2 12	1.5 18		0.2 12	1.5 18		0.2 12	1.5 18	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 22)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times (Q0, Q1) (20% - 80%) t _r @ 1 GHz t _f	40 30	55 45	70 55	40 30	55 45	70 55	40 30	55 45	70 55	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

18. Measured using a 75 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. OLS = FLOAT. Input edge rates 40 ps (20% – 80%).

 $19.t_{SKEW} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform.

20. Additive RMS jitter with 50% Duty Cycle clock signal at 7 GHz.

21. Additive Peak-to-Peak data dependent jitter with NRZ PRBS 2³¹⁻¹ data at 7 Gb/s.

22. Input Voltage Swing is a single-ended measurement operating in differential mode. VINPP (max) cannot exceed V_{CC} - V_{EE}.

*When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE}.

Figure 4. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D0 to Q0 Signal Path Selected; SelA = Low, SelB = High)

Figure 5. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D1 to Q0 Signal Path Selected; SelA = High, SelB = Low)

Figure 6. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D0 to Q0 and Q1 Signal Path Selected; SelA = Low, SelB = Low)

Figure 7. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D1 to Q0 and Q1 Signal Path Selected; SelA = High, SelB = High)

Total System Jitter = 17.2 ps Input Generator Jitter = 10 ps Device Jitter = 6.8 ps

X = 60 ps/div

Figure 8. Eye Diagram at 3.2 Gb/s (V_{CC} – V_{EE} = 3.3 V, OLS = FLOAT @ 25°C with input pattern of 2^{31–1} PRBS, 5000 Waveforms)

Total System Jitter = 17.2 ps Input Generator Jitter = 10 ps Device Jitter = 7.2 ps

Figure 9. Eye Diagram at 7 GBit/s

(V_{CC} - V_{EE} = 3.3 V, OLS = FLOAT @ 25°C with input pattern of 2³¹⁻¹ PRBS, 5000 Waveforms)

Figure 12. AC Reference Measurement

Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
NBSG72AMN	QFN-16	123 Units / Rail
NBSG72AMNG	QFN-16 (Pb-Free)	123 Units / Rail
NBSG72AMNR2	QFN-16	3000 / Tape & Reel

Board	Description
NBSG72AMNEVB	NBSG72AMN Evaluation Board

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1642/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

||||||

13

BOTTOM VIEW

0

е

ł E2

4

16

16X K

0.10 С

 \oplus 0.05 С NOTE 3

7

16X b A B

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 L_{max} CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG AND FLAG

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.80	1.00		
A1	0.00	0.05		
A3	0.20 REF			
b	0.18	0.30		
D	3.00 BSC			
D2	1.65	1.85		
Е	3.00 BSC			
E2	1.65	1.85		
е	0.50 BSC			
κ	0.20			
L	0.30	0.50		

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GigaComm is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.