Low-Voltage CMOS 16-Bit Buffer ## With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting) The MC74LCX16244 is a high performance, non–inverting 16–bit buffer operating from a 2.3 to 3.6 V supply. The device is nibble controlled. Each nibble has separate Output Enable inputs which can be tied together for full 16–bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\rm I}$ specification of 5.5 V allows MC74LCX16244 inputs to be safely driven from 5.0 V devices. The MC74LCX16244 is suitable for memory address driving and all TTL level bus oriented transceiver applications. The 4.5 ns maximum propagation delays support high performance applications. Current drive capability is 24 mA at the outputs. The Output Enable (\overline{OEn}) inputs, when HIGH, disable the outputs by placing them in a HIGH Z condition. The MC74LCX16244 contains sixteen non-inverting buffers with 3–state 5.0 V–tolerant outputs. The device is nibble controlled with each nibble functioning identically, but independently. The control pins may be tied together to obtain full 16–bit operation. The 3–state outputs are controlled by an Output Enable (\overline{OEn}) input for each nibble. When \overline{OEn} is LOW, the outputs are on. When \overline{OEn} is HIGH, the outputs are in the high impedance state. #### **Features** - Designed for 2.3 V to 3.6 V V_{CC} Operation - 4.5 ns Maximum t_{pd} - 5.0 V Tolerant Interface Capability With 5.0 V TTL Logic - Supports Live Insertion and Withdrawal - I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 \text{ V}$ - LVTTL Compatible - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability - Near Zero Static Supply Current in All Three Logic States (20 μA) Substantially Reduces System Power Requirements - Latchup Performance Exceeds 500 mA - ESD Performance: - ♦ Human Body Model >2000 V - ◆ Machine Model >200 V - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant 1 #### ON Semiconductor® http://onsemi.com TSSOP-48 DT SUFFIX CASE 1201 #### **MARKING DIAGRAM** LCX16244G AWLYYWW A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. **Table 1. PIN NAMES** | Pins | Function | |----------------|----------------------| | OEn | Output Enable Inputs | | D0-D15 | Inputs | | O0-O15 | Outputs | Figure 2. Logic Diagram Figure 1. Pinout: 48-Lead (Top View) #### **TRUTH TABLE** | OE1 | D0:3 | O0:3 | OE2 | D4:7 | O4:7 | OE3 | D8:11 | O8:11 | OE4 | D12:15 | 012:15 | |-----|------|------|-----|------|------|-----|-------|-------|-----|--------|--------| | L | L | L | L | L | L | L | L | L | L | L | L | | L | Н | Н | L | Н | Н | L | Н | Н | L | Н | Н | | Н | Х | Z | Н | Х | Z | Н | Х | Z | Н | Х | Z | - H = High Voltage Level L = Low Voltage Level - Z = High Impedance State - X = High or Low Voltage Level and Transitions Are Acceptable; for I_{CC} reasons, DO NOT FLOAT Inputs. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-----------------------|-----------------------| | MC74LCX16244DTG | TSSOP-48
(Pb-Free) | 39 Units / Rail | | M74LCX16244DTR2G | TSSOP-48
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Condition | Units | |------------------|----------------------------------|---------------------------------|--------------------------------------|-------| | V _{CC} | DC Supply Voltage | -0.5 to +7.0 | | V | | VI | DC Input Voltage | $-0.5 \le V_1 \le +7.0$ | | V | | Vo | DC Output Voltage | $-0.5 \le V_{O} \le +7.0$ | Output in 3-State | V | | | | $-0.5 \le V_O \le V_{CC} + 0.5$ | Output in HIGH or LOW State (Note 1) | V | | I _{IK} | DC Input Diode Current | -50 | V _I < GND | mA | | lok | DC Output Diode Current | -50 | V _O < GND | mA | | | | +50 | V _O > V _{CC} | mA | | Io | DC Output Source/Sink Current | ±50 | | mA | | I _{CC} | DC Supply Current Per Supply Pin | ±100 | | mA | | I _{GND} | DC Ground Current Per Ground Pin | ±100 | | mA | | T _{STG} | Storage Temperature Range | -65 to +150 | | °C | | MSL | Moisture Sensitivity | | Level 1 | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Тур | Max | Units | |-----------------|--|------------|----------------------|---------------------|-------| | V _{CC} | Supply Voltage Operating Data Retention Only | 2.0
1.5 | 2.5, 3.3
2.5, 3.3 | 3.6
3.6 | V | | VI | Input Voltage | 0 | | 5.5 | V | | V _O | Output Voltage (HIGH or LOW State) (3-State) | 0 | | V _{CC} 5.5 | V | | Іон | HIGH Level Output Current $V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$ | | | -24
-12
-8 | mA | | l _{OL} | LOW Level Output Current $V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$ | | | +24
+12
+8 | mA | | T _A | Operating Free-Air Temperature | -40 | | +85 | °C | | Δt/ΔV | Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V | 0 | | 10 | ns/V | ^{1.} I_O absolute maximum rating must be observed. #### DC ELECTRICAL CHARACTERISTICS | | | | T _A = -40°C | | | |------------------|---------------------------------------|--|------------------------|------|-------| | Symbol | Characteristic | Condition | Min | Max | Units | | V_{IH} | HIGH Level Input Voltage (Note 2) | 2.3 V ≤ V _{CC} ≤ 2.7 V | 1.7 | | V | | | | 2.7 V ≤ V _{CC} ≤ 3.6 V | 2.0 | | | | V_{IL} | LOW Level Input Voltage (Note 2) | 2.3 V ≤ V _{CC} ≤ 2.7 V | | 0.7 | V | | | | 2.7 V ≤ V _{CC} ≤ 3.6 V | | 0.8 | | | V _{OH} | HIGH Level Output Voltage | $2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$ | V _{CC} - 0.2 | | V | | | | V _{CC} = 2.3 V; I _{OH} = -8 mA | 1.8 | | | | | | $V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$ | 2.2 | | | | | | V _{CC} = 3.0 V; I _{OH} = -18 mA | 2.4 | | | | | | V _{CC} = 3.0 V; I _{OH} = -24 mA | 2.2 | | | | V _{OL} | LOW Level Output Voltage | $2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$ | | 0.2 | V | | | | V _{CC} = 2.3 V; I _{OL} = 8 mA | | 0.6 | | | | | V _{CC} = 2.7 V; I _{OL} = 12 mA | | 0.4 | | | | | V _{CC} = 3.0 V; I _{OL} = 16 mA | | 0.4 | | | | | V _{CC} = 3.0 V; I _{OL} = 24 mA | | 0.55 | | | I _{OZ} | 3-State Output Current | $\begin{split} V_{CC} = 3.6 \text{ V}, V_{IN} = V_{IH} \text{ or } V_{IL}, \\ V_{OUT} = 0 \text{ to } 5.5 \text{ V} \end{split}$ | | ±5 | μΑ | | I _{OFF} | Power Off Leakage Current | V _{CC} = 0, V _{IN} = 5.5 V or V _{OUT} = 5.5 V | | 10 | μΑ | | I _{IN} | Input Leakage Current | V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND | | ±5 | μΑ | | I _{CC} | Quiescent Supply Current | V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND | | 10 | μΑ | | ΔI_{CC} | Increase in I _{CC} per Input | $2.3 \le V_{CC} \le 3.6 \text{ V}; V_{IH} = V_{CC} - 0.6 \text{ V}$ | | 500 | μΑ | ^{2.} These values of V_{\parallel} are used to test DC electrical characteristics only. ## AC CHARACTERISTICS (t_R = t_F = 2.5 ns; R_L = 500 Ω) | | | | T _A = -40°C to +85°C | | | | | | | |--------------------------------------|---|----------|---------------------------------|----------------------|------------|----------------|---|--------------------|-------| | | | | | 3 V ± 0.3 V
50 pF | | 2.7 V
50 pF | V _{CC} = 2.5
C _L = | V ± 0.2 V
30 pF | | | Symbol | Parameter | Waveform | Min | Max | Min | Max | Min | Max | Units | | t _{PLH}
t _{PHL} | Propagation Delay
Input to Output | 1 | 1.5
1.5 | 4.5
4.5 | 1.5
1.5 | 5.2
5.2 | 1.5
1.5 | 5.4
5.4 | ns | | t _{PZH} | Output Enable Time to
High and Low Level | 2 | 1.5
1.5 | 5.5
5.5 | 1.5
1.5 | 6.3
6.3 | 1.5
1.5 | 7.2
7.2 | ns | | t _{PHZ} | Output Disable Time From High and Low Level | 2 | 1.5
1.5 | 5.4
5.4 | 1.5
1.5 | 5.7
5.7 | 1.5
1.5 | 6.5
6.5 | ns | | toshl
toslh | Output-to-Output Skew (Note 3) | | | 1.0
1.0 | | | | | ns | Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design. #### **DYNAMIC SWITCHING CHARACTERISTICS** | | | | T _A = +25°C | | | | |------------------|--|---|------------------------|--------------|-----|-------| | Symbol | Characteristic | Condition | Min | Тур | Max | Units | | V _{OLP} | Dynamic LOW Peak Voltage
(Note 4) | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V} $ $V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ | | 0.8
0.6 | | V | | V _{OLV} | Dynamic LOW Valley Voltage
(Note 4) | $\begin{array}{c} V_{CC} = 3.3 \text{ V, } C_L = 50 \text{ pF, } V_{IH} = 3.3 \text{ V, } V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V, } C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{ V, } V_{IL} = 0 \text{ V} \end{array}$ | | -0.8
-0.6 | | V | ^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. ## **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Units | |------------------|-------------------------------|---|---------|-------| | C _{IN} | Input Capacitance | V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 7 | pF | | C _{OUT} | Output Capacitance | V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 8 | pF | | C _{PD} | Power Dissipation Capacitance | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 20 | pF | WAVEFORM 2 – OUTPUT ENABLE AND DISABLE TIMES $t_R=t_F=2.5~\text{ns},~10\%$ to $90\%;~f=1~\text{MHz};~t_W=500~\text{ns}$ Figure 3. AC Waveforms **Table 2. AC WAVEFORMS** | | V _{CC} | | | | | |-----------------|-------------------------|-------------------------|--------------------------|--|--| | Symbol | 3.3 V ± 0.3 V | 2.7 V | 2.5 V ± 0.2 V | | | | Vmi | 1.5 V | 1.5 V | V _{CC} / 2 | | | | Vmo | 1.5 V | 1.5 V | V _{CC} / 2 | | | | V _{HZ} | V _{OL} + 0.3 V | V _{OL} + 0.3 V | V _{OL} + 0.15 V | | | | V _{LZ} | V _{OH} – 0.3 V | V _{OH} – 0.3 V | V _{OH} – 015 V | | | Figure 4. Test Circuit #### **Table 3. TEST CIRCUIT** | Test | Switch | |--|--| | t _{PLH} , t _{PHL} | Open | | t _{PZL} , t _{PLZ} | 6 V at $V_{CC} = 3.3 \pm 0.3 \text{ V}$
6 V at $V_{CC} = 2.5 \pm 0.2 \text{ V}$ | | Open Collector/Drain t _{PLH} and t _{PHL} | 6 V | | t _{PZH} , t _{PHZ} | GND | C_L = 50 pF at V_{CC} = 3.3 ± 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 ± 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω) #### TSSOP-48 CASE 1201-01 ISSUE B **DATE 06 JUL 2010** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS - SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. - DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM PLANE -W- | | MILLIN | IETERS | INCHES | | | |-----|--------|--------|--------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 12.40 | 12.60 | 0.488 | 0.496 | | | В | 6.00 | 6.20 | 0.236 | 0.244 | | | С | | 1.10 | | 0.043 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.50 | BSC | 0.019 | 7 BSC | | | Н | 0.37 | | 0.015 | | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.17 | 0.27 | 0.007 | 0.011 | | | K1 | 0.17 | 0.23 | 0.007 | 0.009 | | | L | 7.95 | 8.25 | 0.313 | 0.325 | | | М | 0 ° | 8° | 0 ° | 8° | | #### **RECOMMENDED SOLDERING FOOTPRINT** #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot WL ΥY = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. | DOCUMENT NUMBER: | 98ASH70297A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-48 | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative