

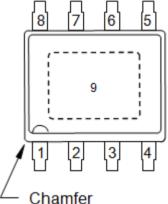
Rev. V1

Features

- Optimized for CW, pulsed, WiMAX, and other applications from DC - 3000 MHz
- 23 W P3dB peak envelope power (PEP)
- 1.5 W linear power @ 2% EVM for single carrier OFDM, 10.3 dB peak/average, 3.5 MHz channel bandwidth, 14 dB gain, 23.5% efficiency, 2500-2700 MHz
- 100% RF tested
- · Thermally-enhanced industry standard package
- · High reliability gold metallization process
- · Lead-free and RoHS compliant
- Subject to EAR99 export control

Description

The NPT25015 GaN HEMT is a power transistor optimized for DC - 3 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 23 W. This transistor is assembled in an industry standard surface mount plastic package.


The NPT25015 is ideally suited for defense communications, land mobile radio, avionics, wireless infrastructure, ISM applications and VHF/UHF/L/S-band radar.

Ordering Information

Part Number	Package
NPT25015DT	Tube (97 pieces)
NPT25015DR	1500 piece reel

Functional Schematic

Pin Configuration

Pin No.	Function
1 - 4	Gate
5 - 8	Drain
9	Paddle ¹

 The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

1

Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Rev. V1

Typical 2-Tone Performance: (measured in test fixture)

Freq. = 2500 MHz, V_{DS} = 28 V, I_{DQ} = 200 mA, Tone Spacing = 1 MHz, T_{C} = 25°C

Parameter	Symbol	Min.	Тур.	Max.	Units
Peak Envelope Power 3 dB Compression 1 dB Compression	P _{3dB, PEP} P _{1dB, PEP}	20 —	25 15	_	W
Small Signal Gain	Gss	13	14	15	dB
Drain Efficiency @ 3 dB Compression	η	53	58	_	%

Typical OFDM Performance:

(measured in load pull system (refer to Table 1 and Figure 1))

Frequency = 2500 - 2700 MHz, V_{DS} = 28 V, I_{DQ} = 200 mA, Single Carrier OFDM waveform 64-QAM 3/4, 8 burst, continuous frame data, 10 MHz channel bandwidth, Peak/Avg = 10.3 dB @ 0.01% probability on CCDF, P_{OUT} = 1.5 W avg., T_{C} = 25°C

Parameter	Symbol	Typical	Units
Power Gain	GP	14.0	dB
Drain Efficiency	η	23.5	%
Error Vector Magnitude	EVM	2.0	%

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

NPT25015

GaN Power Transistor 28 V, 23 W DC - 3 GHz

Rev. V1

DC Electrical Characteristics: T_c = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Off Characteristics						
Drain-Source Leakage Current	V _{GS} = -8 V, I _D = 8 mA	V_{BDS}	100	_	_	V
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_	_	4	mA
On Characteristics						
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 8 mA	V _T	-2.3	-1.8	-1.3	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 200 mA	V_{GSQ}	-2.0	-1.5	-1.0	V
On Resistance	V _{GS} = 2 V, I _D = 60 mA	R _{ON}	_	0.45	0.50	Ω
Maximum Drain Current	V _{DS} = 7 V pulsed, pulse width 300 ms 0.2% Duty Cycle	I _{D,MAX}		5.0		Α

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	100 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Total Device Power Dissipation (derated above 25°C)	28 W		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

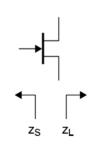
- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 3. MACOM does not recommend sustained operation near these survivability limits.
- 4. Operating at nominal conditions with $T_J \le 200^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.

Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J = 200°C	$R_{ heta JC}$	6.25	°C/W

^{5.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Rev. V1


Table 1: Optimum Impedance Characteristics for Linear OFDM Tuning, single carrier OFDM waveform 64-QAM 3/4, 8 burst, continuous frame data, 10 MHz channel bandwidth. Peak/Avg = 10.3 dB @ 0.01% probability on CCDF

Frequency (MHz)	Z _S (Ω)	Z _L (Ω)	P _{out} (W)	Gain (dB)	Drain Efficiency (%)
2500	5.2 - j 1.6	3.3 + j 1.7	1.5	14.5	25
2600	4.6 - j 1.9	3.1 + j 2.7	1.5	14.5	25
2700	4.0 - j 2.2	2.9 + j 4.3	1.5	14.4	24

Table 2: Optimum Impedance Characteristics for CW P_{SAT}, Efficiency, and Gain

Frequency	Z _S	Z _L	P _{SAT}	G _{SS}	Drain Efficiency
(MHz)	(Ω)	(Ω)	(W)	(dB)	(%)
2500	3.7 - j 4.7	6.9 + j 1.2	23	14.5	60

Impedance Reference

ZS is the source impedance presented to the device.

Z_L is the load impedance presented to the device.

Z_S and Z_L vs. Frequency

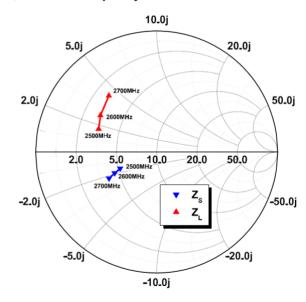


Figure 1 - Optimum Impedance Characteristics for OFDM Tuning, V_{DS} = 28 V, I_{DQ} = 200 mA

Rev. V1

Load-Pull Data, Reference Plane at Device Leads: Freq. = 2500 MHz, V_{DS} = 28 V, I_{DQ} = 200 mA (unless noted)

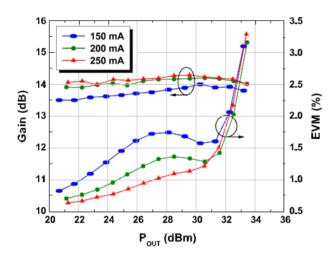


Figure 2 - Typical OFDM Performance

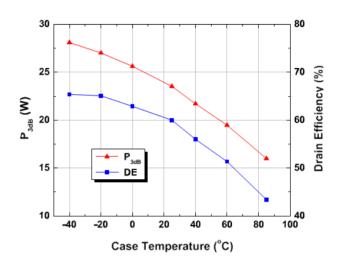


Figure 3 - P3dB,PEP and Drain vs. Temperature

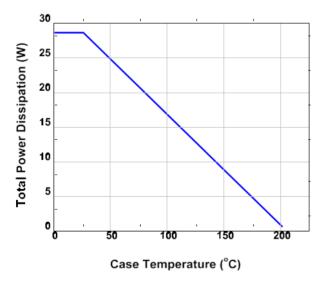
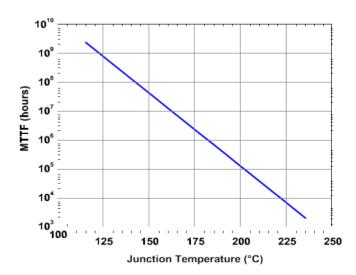
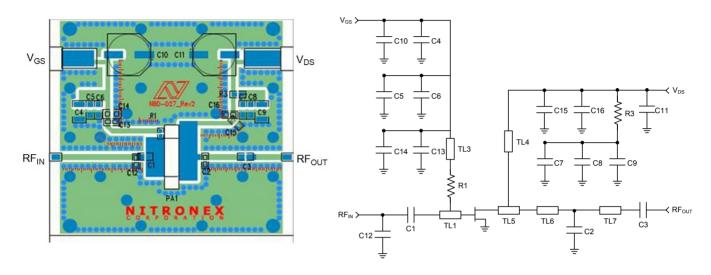



Figure 4 - Power Derating Curve


Figure 5 - MTTF of NRF1 devices as a function temperature

Rev. V1

APP-NPT25015-25, 2500 - 2700 MHz Linear WiMAX Application Board

802.16e Single Carrier OFDM, 64-QAM 3/4, 8-burst, 20 ms frame 75% filled, 10 MHz channel bandwidth, PAR = 10.3 dB @ 0.01% CCDF

Parts list

Reference	Value	Tolerance	Manufacturer	Part Number
C1	5.6 pF	±0.1 pF	ATC	ATC600F5R6B
C2	2.2 pF	±0.1 pF	ATC	ATC600F2R2B
C3	3.3 pF	±0.1 pF	ATC	ATC600F3R3B
C4, C9	1 μF	10 %	Panasonic	ECJ-5YB2A105M
C5, C8	0.1 µF	10 %	Kemet	C1206C104K1RACTU
C6, C7	0.01 µF	10 %	AVX	12061C103KAT2A
C10	150 μF	20 %	Nichicon	UPW1C151MED
C11	270 μF	20 %	United Chemi-Con	ELXY630ELL271MK25S
C12	1 pF	±0.1 pF	ATC	ATC600F1R0B
C13, C15	33 pF	5 %	ATC	ATC600F330B
C14, C16	1000 pF	10 %	Kemet	C0805C102K1RACTU
R1	49.9 Ω	1 %	Panasonic	ERJ-2RKF49R9X
R3	0.33 Ω	1 %	Panasonic	ERJ-6RQFR33V
PCB		Ro	gers RO4350, ε_r =3.5, t = 30	mils

Rev. V1

APP-NPT25015-25, 2500 - 2700 MHz Linear WiMAX Application Board

802.16e Single Carrier OFDM, 64-QAM 3/4, 8-burst, Continuous Frame Data, 10 MHz channel bandwidth, PAR = 10.3 dB @ 0.01% CCDF

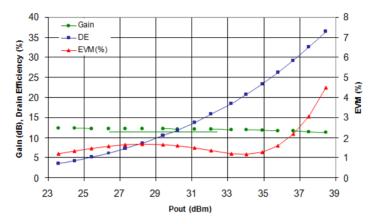


Figure 7 - Gain, Efficiency, EVM @ 2500 MHz

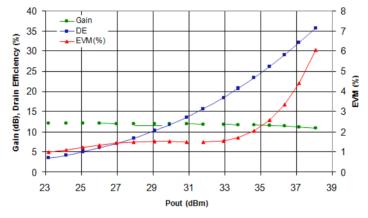
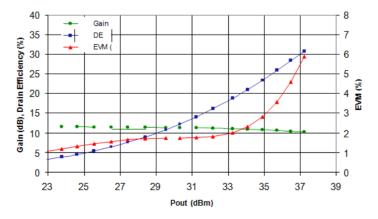
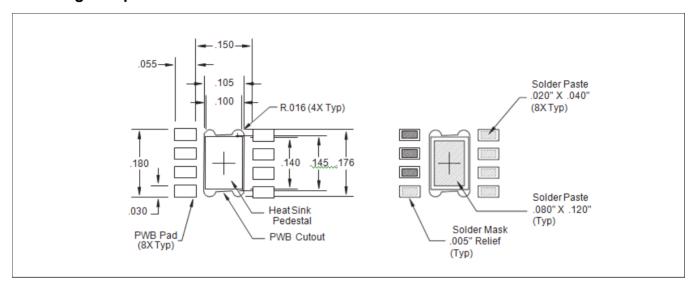
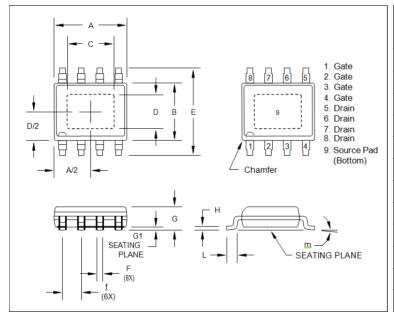


Figure 8 - Gain, Efficiency, EVM @ 2600 MHz




Figure 9 - Gain, Efficiency, EVM @ 2700 MHz

7



Rev. V1

Mounting Footprint

Package Dimensions and Pin out[†]

Dim.	Inches		Millim	neters
Dilli.	Min.	Max.	Min.	Max.
Α	0.189	0.196	4.80	4.98
В	0.150	0.157	3.81	3.99
С	0.107	0.123	2.72	3.12
D	0.071	0.870	1.870	2.21
E	0.230	0.244	5.85	6.19
f	0.050	BSC	1.270 BSC	
F	0.0138	0.0192	0.35	0.49
G	0.055	0.061	1.40	1.55
G1	0.000	0.004	0.00	0.10
Н	0.075	0.098	1.91	2.50
L	0.016	0.035	0.41	0.89
m	0°	8°	0°	8°

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.

NPT25015

GaN Power Transistor 28 V, 23 W DC - 3 GHz

Rev. V1

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.