

gDDR3 SDRAM Graphics Addendum

MT41J256M16 - 32 Meg x 16 x 8 Banks

Features

- $V_{DD} = V_{DDQ} = +1.5V (1.425 1.575V)$
- $V_{DD} = V_{DDQ} = +1.35V (1.283-1.45V)$ capable at down clocked speeds
- Differential bidirectional data strobe
- 8*n*-bit prefetch architecture
- Differential clock inputs (CK, CK#)
- 8 internal banks
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Programmable CAS READ latency (CL)
- Posted CAS additive latency (AL): 0, CL 1, CL 2
- Programmable CAS WRITE latency (CWL)
- Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set [MRS])
- Selectable BC4 or BL8 on-the-fly (OTF)
- Self refresh mode
- T_C of 0°C to 115°C
 - 64ms, 8192 cycle refresh at 0°C to 85°C
 - 32ms at 85°C to 115°C

Table 1: Key Timing Parameters

- Self refresh temperature (SRT)
- Automatic self refresh (ASR)
- Write leveling
- Multipurpose register
- Output driver calibration

Options

options	i i i ai kii i g
Configuration	_
– 256 Meg x 16	256M16
• FBGA package (Pb-free) – x16	
– 96-ball (7.5mm x 13.5mm)	LY
• Timing – cycle time	
- 1.0ns @ CL = 14 (gDDR3-2000)	-091G
 Operating temperature 	
– Commercial ($0^{\circ}C \le T_C \le 115^{\circ}C$)	None
Revision	:N

Marking

Note: 1. For complete device functionality and specifications, refer to the standard 4Gb DDR3 SDRAM data sheet found at www.micron.com. The information in this data sheet supersedes the standard data sheet.

Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	^t RP (ns)	CL (ns)
	2200 ¹	15-15-15	13.65	13.65	13.65
-091G	2000 ²	14-14-14	14	14	14
-0910	1800 ²	13-13-13	14.3	14.3	14.3
	1600 ²	11-11-11	13.75	13.75	13.75

Notes: 1. Requires $V_{DD} = V_{DDQ} = +1.5V_{NOM}$

2. $V_{DD} = V_{DDQ} = +1.35V_{NOM}$ capable

Table 2: Addressing

Parameter	256 Meg x 16
Configuration	32 Meg x 16 x 8 banks
Refresh count	8K
Row addressing	32K (A[14:0])
Bank addressing	8 (BA[2:0])
Column addressing	1K (A[9:0])

Table 3: Part Number Cross Reference

Micron Part Number	FBGA Code
MT41J256M16LY-091G:N	D9SMP

FBGA Part Marking Decoder

Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. Micron's FBGA part marking decoder is available at www.micron.com/decoder.

Ball Assignments

Figure 1: 96-Ball FBGA – x16 (Top View)

- 1. Ball descriptions are listed in the main 4Gb DDR3 data sheet.
 - 2. A comma separates the configuration; a slash defines a selectable function. Example D7 = NF, NF/TDQS# is selectable between NF or TDQS# via MRS.

Package Dimensions

Figure 2: 96-Ball FBGA - x16 (LY)

Note: 1. All dimensions are in millimeters.

Electrical Specifications

Table 4: DC Electrical Characteristics and Operating Conditions

All voltages are referenced to V_{SS}

Parameter/Condition	Symbol	Min	Nom	Мах	Unit	Notes
Supply voltage	V _{DD}	1.425	1.5	1.575	V	1, 2, 3
I/O supply voltage	V _{DDQ}	1.425	1.5	1.575	V	1, 2, 3
Supply voltage	V _{DD}	1.283	1.35	1.45	V	1, 2, 4
I/O supply voltage	V _{DDQ}	1.283	1.35	1.45	V	1, 2, 4

Notes: 1. V_{DD} and V_{DDQ} must track one another. V_{DDQ} must be $\leq V_{DD}$. $V_{SS} = V_{SSQ}$.

- 2. V_{DD} and V_{DDQ} may include AC noise of ±50mV (250 kHz to 20 MHz) in addition to the DC (0 Hz to 250 kHz) specifications. V_{DD} and V_{DDQ} must be at same level for valid AC timing parameters.
- 3. Valid with all speed bins.
- 4. Not for use with -093 speed bin.

Table 5: Input/Output Capacitance

Note 1 applies to the entire table

Capacitance		gDDR	3-1600	gDDR3	3-1800	gDDR3	3-2000	gDDR	3-2200		Note
Parameters	Symbol	Min	Мах	Min	Мах	Min	Max	Min	Max	Unit	s
CK and CK#	С _{СК}	0.8	1.4	0.8	1.3	0.8	1.3	0.8	1.3	pF	
ΔC: CK to CK#	C _{DCK}	0	0.15	0	0.15	0	0.15	0	0.15	pF	
Single-end I/O: DQ, DM	C _{IO}	1.5	2.3	1.5	2.2	1.5	2.1	1.5	2.1	pF	2
Differential I/O: DQS, DQS#, TDQS, TDQS#	C _{IO}	1.5	2.3	1.5	2.2	1.5	2.1	1.5	2.1	pF	3
ΔC: DQS to DQS#, TDQS, TDQS#	C _{DDQS}	0	0.15	0	0.15	0	0.15	0	0.15	pF	3
ΔC: DQ to DQS	C _{DIO}	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	4
Inputs (CTRL, CMD, ADDR)	CI	0.75	1.3	0.75	1.2	0.75	1.2	0.75	1.2	pF	5
ΔC: CTRL to CK	C _{DI_CTRL}	-0.4	0.2	-0.4	0.2	-0.4	0.2	-0.4	0.2	pF	6
ΔC: CMD_ADDR to CK	C _{DI_CMD_AD} DR	-0.4	0.4	-0.4	0.4	-0.4	0.4	-0.4	0.4	pF	7
ZQ pin capacitance	Czo	-	3.0	-	3.0	-	3.0	-	3.0	pF	
Reset pin capacitance	C _{RE}	-	3.0	-	3.0	-	3.0	-	3.0	pF	

Notes: 1. $V_{DD} = +1.5V \pm 0.075 \text{mV}$, $V_{DDQ} = V_{DD}$, $V_{REF} = V_{SS}$, f = 100 MHz, $T_C = 25^{\circ}\text{C}$. $V_{OUT(DC)} = 0.5 \times V_{DDO}$, $V_{OUT} = 0.1V$ (peak-to-peak).

- 2. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.
- 3. Includes TDQS, TDQS#. C_{DDQS} is for DQS vs. DQS# and TDQS vs. TDQS# separately.
- 4. $C_{DIO} = C_{IO(DQ)} 0.5 \times (C_{IO(DQS)} + C_{IO(DQS\#)}).$
- 5. Excludes CK, CK#; CTRL = ODT, CS#, and CKE; CMD = RAS#, CAS#, and WE#; ADDR = A[*n*:0], BA[2:0].
- 6. $C_{DI_CTRL} = C_{I(CTRL)} 0.5 \times (C_{CK(CK)} + C_{CK(CK\#)}).$
- 7. $C_{DI_CMD_ADDR} = C_{I(CMD_ADDR)} 0.5 \times (C_{CK(CK)} + C_{CK(CK\#)}).$

Electrical Characteristics – I_{DD} Specifications

 $I_{\rm DD}$ values are for full operating range of voltage and temperature unless otherwise noted.

Table 6: I_{DD} Maximum Limits - Die Rev. N

Speed Bin						
I _{DD}	gDDR3-1600	gDDR3-1800	gDDR3-2000	gDDR3-2200	Units	Notes
I _{DD0}	66	73	82	82	mA	1, 2
I _{DD1}	87	91	96	96	mA	1, 2
I _{DD2P0} (slow)	18	18	18	18	mA	1, 2
I _{DD2P1} (fast)	32	35	43	43	mA	1, 2
I _{DD2Q}	32	30	37	37	mA	1, 2
I _{DD2N}	32	35	37	37	mA	1, 2
I _{DD2NT}	42	45	49	49	mA	1, 2
I _{DD3P}	38	41	44	44	mA	1, 2
I _{DD3N}	47	49	52	52	mA	1, 2
I _{DD4R}	235	252	285	285	mA	1, 2
I _{DD4W}	171	190	200	200	mA	1, 2
I _{DD5B}	235	242	250	250	mA	1, 2
I _{DD6}	20	20	20	20	mA	1, 2, 3
I _{DD6ET}	25	25	25	25	mA	2, 4
I _{DD7}	243	274	305	305	mA	1, 2
I _{DD8}	I _{DD2P0} + 2mA	mA	1, 2			

Notes: 1. $T_C = 85^{\circ}C$; SRT and ASR are disabled.

- 2. Enabling ASR could increase I_{DDx} by up to an additional 2mA.
- 3. Restricted to T_C (MAX) = 85°C.
- 4. $T_C = 85^{\circ}C$; ASR and ODT are disabled; SRT is enabled.
- 5. The I_{DD} values must be derated (increased) on IT-option devices when operated outside of the range $0^{\circ}C \le T_C \le 85^{\circ}C$:
 - When $T_C < 0^{\circ}$ C: I_{DD2P} and I_{DD3P} must be derated by 4%; I_{DD4R} and I_{DD5W} must be derated by 2%; and I_{DD6} and I_{DD7} must be derated by 7%.
 - When $T_C > 85^{\circ}$ C: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5W} must be derated by 2%; I_{DD2Px} must be derated by 30%.

Speed Bin Tables

Table 7: gDDR3-1600 Speed Bins

gDDR3-1600 Speed Bin			-12	25G		
CL- ^t RCD- ^t RP			11-1	1-11	Unit	
Parameter		Symbol	Min	Мах		Notes
ACTIVATE to internal READ o	r WRITE delay time	^t RCD	13.75	_	ns	
PRECHARGE command period		^t RP	13.75	-	ns	
ACTIVATE-to-ACTIVATE or RE	FRESH command period	^t RC	48.75	-	ns	
ACTIVATE-to-PRECHARGE cor	nmand period	^t RAS	35	9 x ^t REF	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	2
	CWL = 6, 7, 8	^t CK (AVG)	Rese	rved	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8	^t CK (AVG)	Rese	rved	ns	3
CL = 7	CWL = 5	^t CK (AVG)	Rese	Reserved		3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
	CWL = 7, 8	^t CK (AVG)	Reserved		ns	3
CL = 8	CWL = 5	^t CK (AVG)	Reserved		ns	3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
	CWL = 7, 8	^t CK (AVG)	Rese	rved	ns	3
CL = 9	CWL = 5, 6	^t CK (AVG)	Rese	erved	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Rese	rved	ns	3
CL = 10	CWL = 5, 6	^t CK (AVG)	Rese	erved	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Reserved		ns	3
CL = 11	CWL = 5, 6, 7	^t CK (AVG) Reserved		erved	ns	3
	CWL = 8	^t CK (AVG)	1.25	<1.5	ns	2
Supported CL settings		-	5, 6, 7, 8,	9, 10, 11	СК	
Supported CWL settings			5, 6,	7, 8	СК	

Notes: 1. ^tREFI depends on T_{OPER}.

2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.

3. Reserved settings are not allowed.

Table 8: gDDR3-1800 Speed Bins

gDDR3-1800 Speed Bin			-10)7G		
CL- ^t RCD- ^t RP			13-1	3-13	-	
Parameter		Symbol	Min	Мах	Unit	Notes
ACTIVATE to internal READ	or WRITE delay time	^t RCD	14.3	-	ns	
PRECHARGE command peri	od	tRP	14.3	-	ns	
ACTIVATE-to-ACTIVATE or F	REFRESH command period	^t RC	48.91	-	ns	
ACTIVATE-to-PRECHARGE c	ommand period	^t RAS	35	9 x ^t REFI	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	3
	CWL = 6, 7, 8, 9	^t CK (AVG)	Rese	erved	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Rese	erved	ns	3
CL = 7	CWL = 5, 7, 8, 9	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6	^t CK (AVG)	Rese	erved	ns	3
CL = 8	CWL = 5, 7, 8, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
CL = 9	CWL = 5, 6, 8, 9	^t CK (AVG)	Rese	Reserved		3
	CWL = 7	^t CK (AVG)	1.875	<2.5	ns	3
CL = 10	CWL = 5, 6, 9	^t CK (AVG)	Rese	erved	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Rese	erved	ns	3
CL = 11	CWL = 5, 6, 7	^t CK (AVG)	Rese	erved	ns	3
	CWL = 8	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 9	^t CK (AVG)	Rese	erved	ns	3
CL - 12	CWL = 5, 6, 7, 8	^t CK (AVG)	Rese	erved	ns	3
	CWL = 9	^t CK (AVG)	Rese	erved	ns	3
CL = 13	CWL = 5, 6, 7, 8	^t CK (AVG)	Rese	erved	ns	3
	CWL = 9	^t CK (AVG)	1.1	<1.25	ns	2
Supported CL settings			5, 6, 7, 8, 9	, 10, 11, 13	СК	
Supported CWL settings			5, 6,	7, 8, 9	СК	

Notes: 1. ^tREFI depends on T_{OPER}.

2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.

3. Reserved settings are not allowed.

Table 9: gDDR3-2000 Speed Bins

gDDR3-2000 Speed Bin			-0	93G		
CL- ^t RCD- ^t RP			14-	14-14		
Parameter		Symbol	Min	Max	Unit	Notes
ACTIVATE to internal REA	AD or WRITE delay time	^t RCD	14	_	ns	
PRECHARGE command p	eriod	^t RP	14	_	ns	
ACTIVATE-to-ACTIVATE o	or REFRESH command period	^t RC	50	_	ns	
ACTIVATE-to-PRECHARGE command period		^t RAS	36	9 x ^t REFI	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Res	erved	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Res	erved	ns	3
CL = 7	CWL = 5, 7, 8, 9	^t CK (AVG)	2.5	3.3	ns	3
	CWL = 6	^t CK (AVG)	Res	erved	ns	3
CL = 8	CWL = 5, 7, 8, 9	^t CK (AVG)	Res	erved	ns	3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
CL = 9	CWL = 5, 6, 8, 9	^t CK (AVG)	Res	erved	ns	3
	CWL = 7	^t CK (AVG)	1.875	<2.5	ns	3
CL = 10	CWL = 5, 6, 9	^t CK (AVG)	Res	erved	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Res	erved	ns	3
CL = 11	CWL = 5, 6, 7	^t CK (AVG)	Res	erved	ns	3
	CWL = 8	^t CK (AVG)	1.5	<1.875	ns	3
	CWL = 9	^t CK (AVG)	Res	erved	ns	3
CL - 12	CWL = 5, 6, 7, 8	^t CK (AVG)	Res	erved	ns	3
	CWL = 9	^t CK (AVG)	Res	erved	ns	3
CL = 13	CWL = 5, 6, 7, 8	^t CK (AVG)	Res	erved	ns	3
	CWL = 9	^t CK (AVG)	1.1	<1.25	ns	2
CL = 14	CWL = 5, 6, 7, 8, 9	^t CK (AVG)	1	<1.1	ns	2
	CWL = 10					
Supported CL settings			5, 6, 7, 8, 9,	10, 11, 13, 14	СК	
Supported CWL settings			5, 6, 7	, 8, 9, 10	СК	

Notes: 1. ^tREFI depends on T_{OPER}.

- 2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.
- 3. Reserved settings are not allowed.

Table 10: gDDR3-2200 Speed Bins

gDDR3-2200 Speed Bin	l		-0	91G		
CL- ^t RCD- ^t RP			15-	15-15		
Parameter		Symbol	Min	Max	Unit	Notes
ACTIVATE to internal REA	AD or WRITE delay time	^t RCD	13.65	_	ns	
PRECHARGE command pe	eriod	^t RP	13.65	_	ns	
ACTIVATE-to-ACTIVATE o	r REFRESH command period	^t RC	46.13	-	ns	
ACTIVATE-to-PRECHARGE	command period	^t RAS	33	9 x ^t REFI	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Res	erved	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Res	erved	ns	3
CL = 7	CWL = 5, 7, 8, 9	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6	^t CK (AVG)	Res	erved	ns	3
CL = 8	CWL = 5, 7, 8, 9	^t CK (AVG)	Res	erved	ns	3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
CL = 9	CWL = 5, 6, 8, 9	^t CK (AVG)	Res	erved	ns	3
	CWL = 7	^t CK (AVG)	1.875	<2.5	ns	2
CL = 10	CWL = 5, 6, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Res	erved	ns	3
CL = 11	CWL = 5, 6, 7	^t CK (AVG)	Res	erved	ns	3
	CWL = 8	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 9	^t CK (AVG)	Res	erved	ns	3
CL - 12	CWL = 5, 6, 7, 8	^t CK (AVG)	Res	erved	ns	3
	CWL = 9	^t CK (AVG)	Res	erved	ns	3
CL = 13	CWL = 5, 6, 7, 8	^t CK (AVG)	Res	erved	ns	3
	CWL = 9	^t CK (AVG)	1.1	<1.25	ns	2
CL = 14	CWL = 5, 6, 7, 8, 9	^t CK (AVG)	1	<1.1	ns	2
	CWL = 10					
CL=15	CWL = 5, 6, 7, 8, 9, 10	^t CK (AVG)	.091	<1	ns	2
	CWL = 11					
Supported CL settings				5, 6, 7, 8, 9, 10, 11, 13, 14, 15		
Supported CWL settings			5, 6, 7, 8	3, 9, 10, 11	СК	

Notes: 1. ^tREFI depends on T_{OPER}.

- 2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.
- 3. Reserved settings are not allowed.

Electrical Characteristics and AC Operating Conditions

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions

			gDDR	3-2000	gDDR3	3-2200		
Parameter		Symbol		Max	Min	Max	Unit	Notes
	Clo	ck Timing						
Clock period average:	$T_{C} = 0^{\circ}C$ to $85^{\circ}C$	^t CK (DLL_DIS)	8	7800	8	7800	ns	9, 42
DLL disable mode	T _C = >85°C to 115°C		8	3900	8	3900	ns	42
Clock period average: DL	L enable mode	^t CK (AVG)	See corre		speed bin CK	table for	ns	10, 11
				range a	allowed			
High pulse width average	e	^t CH (AVG)	0.47	0.53	0.47	0.53	CK	12
Low pulse width average	2	^t CL (AVG)	0.47	0.53	0.47	0.53	СК	12
Clock period jitter	DLL locked	^t JIT _{PER}	-60	60	-60	60	ps	13
	DLL locking	^t JIT _{PER} , lck	-50	50	-50	50	ps	13
Clock absolute period	-	^t CK (ABS)			MIN + ^t JIT _F MAX + ^t JIT		ps	
Clock absolute high pulse	e width	^t CH (ABS)	0.43	-	0.43	-	^t CK (AVG)	14
Clock absolute low pulse	width	^t CL (ABS)	0.43	-	0.43	-	^t CK (AVG)	15
Cycle-to-cycle jitter	DLL locked	^t JIT _{CC}	120 120		ps	16		
	DLL locking	^t JIT _{CC} ,lck	1	00	10	00	ps	16
Cumulative error across	2 cycles	^t ERR2 _{PER}	-88	88	-88	88	ps	17
	3 cycles	^t ERR3 _{PER}	-105	105	-105	105	ps	17
	4 cycles	^t ERR4 _{PER}	-117	117	-117	117	ps	17
	5 cycles	^t ERR5 _{PER}	-126	126	-126	126	ps	17
	6 cycles	^t ERR6 _{PER}	-133	133	-133	133	ps	17
	7 cycles	^t ERR7 _{PER}	-139	139	-139	139	ps	17
	8 cycles	^t ERR8 _{PER}	-145	145	-145	145	ps	17
	9 cycles	^t ERR9 _{PER}	-150	150	-150	150	ps	17
	10 cycles	^t ERR10 _{PER}	-154	154	-154	154	ps	17
	11 cycles	^t ERR11 _{PER}	-158	158	-158	158	ps	17
	12 cycles	^t ERR12 _{PER}	-161	161	-161	161	ps	17
	n = 13, 1449, 50 cycles	^t ERR <i>n</i> per	MI ^t ERRn _{PER} MAX =		$_{\text{ER}} \text{MIN} = (1 + 0.68 \text{in}[n]) \times ^{\text{t}} \text{JI}$ MIN $_{\text{R}n_{\text{PER}}} \text{MAX} = (1 + 0.68 \text{in}[n]) \times ^{\text{t}} \text{JIT}_{\text{PER}} \text{MAX}$		ps	17
	DQ Ir	put Timing	I					
Data setup time to DQS,	Base (specification)	^t DS	_	-	_	-	ps	18, 19
DQS#	V _{REF} @ 1 V/ns	(AC175)	_	_	_	_	ps	19, 20

			gDDR	3-2000	gDDR	3-2200		
Parameter		Symbol	Min	Мах	Min	Max	Unit	Notes
Data setup time to DQS,	Base (specification)	^t DS	-	_	10	-	ps	18, 19
DQS#	V _{REF} @ 1 V/ns	(AC150)	-	_	160	-	ps	19, 20
Data setup time to DQS, DQS#	Base (specification)@ 2 V/ns	^t DS (AC135)	68	-	-	-	ps	19, 20
	V _{REF} @ 2 V/ns		135	-	-	-		19, 20
Data hold time from	Base (specification)	^t DH	70	-	70	-	ps	18, 19
DQS, DQS#	V _{REF} @ 1 V/ns	(DC100)	120	-	120	-	ps	19, 20
Minimum data pulse wid	th	^t DIPW	320	-	320	-	ps	41
	DQ Ou	tput Timing						
DQS, DQS# to DQ skew, p	per access	^t DQSQ	-	85	-	85	ps	
DQ output hold time fro	m DQS, DQS#	^t QH	0.38	-	0.38	-	^t CK (AVG)	21
DQ Low-Z time from CK,	CK#	^t LZ (DQ)	-390	195	-390	195	ps	22, 23
DQ High-Z time from CK	, CK#	^t HZ (DQ)	-	195	-	195	ps	22, 23
	DQ Strob	e Input Timin	g					
DQS, DQS# rising to CK,	CK# rising	^t DQSS	-0.27	0.27	-0.27	0.27	СК	25
DQS, DQS# differential ir	nput low pulse width	^t DQSL	0.45	0.55	0.45	0.55	СК	
DQS, DQS# differential ir	nput high pulse width	^t DQSH	0.45	0.55	0.45	0.55	СК	
DQS, DQS# falling setup	to CK, CK# rising	^t DSS	0.18	-	0.18	-	СК	25
DQS, DQS# falling hold f	rom CK, CK# rising	^t DSH	0.18	-	0.18	-	СК	25
DQS, DQS# differential V	VRITE preamble	tWPRE	0.9	-	0.9	-	СК	
DQS, DQS# differential V	VRITE postamble	tWPST	0.3	-	0.3	-	СК	
	DQ Strobe	Output Timi	ng					
DQS, DQS# rising to/from	n rising CK, CK#	^t DQSCK	-195	195	-195	195	ps	23
DQS, DQS# rising to/from DLL is disabled	n rising CK, CK# when	^t DQSCK (DLL_DIS)	1	10	1	10	ns	26
DQS, DQS# differential o	utput high time	^t QSH	0.40	-	0.40	-	СК	21
DQS, DQS# differential o	utput low time	^t QSL	0.40	-	0.40	-	СК	21
DQS, DQS# Low-Z time (F	RL - 1)	^t LZ (DQS)	-390	195	-391	195	ps	22, 23
DQS, DQS# High-Z time (RL + BL/2)	^t HZ (DQS)	-	195	-	195	ps	22, 23
DQS, DQS# differential R	EAD preamble	^t RPRE	0.9	Note 24	0.9	Note 24	СК	23, 24
DQS, DQS# differential R	EAD postamble	^t RPST	0.3	Note 27	0.3	Note 27	СК	23, 27
	Command ar	nd Address Ti	ming					
DLL locking time		^t DLLK	512	-	512	-	СК	28
CTRL, CMD, ADDR	Base (specification)	^t IS	-	-	45	-	ps	29, 30
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC175)	-	_	220	-	ps	20, 30

		gDDR3	3-2000	gDDR3-2200				
Parameter		Symbol	Min	Мах	Min	Мах	Unit	Notes
CTRL, CMD, ADDR	Base (specification)	^t IS	-	-	170	-	ps	29, 30
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC150)	-	-	320	-	ps	20, 30
CTRL, CMD, ADDR	Base (specification)	^t IS	65	-	-	-	ps	
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC135)	200	-	-	-	ps	
CTRL, CMD, ADDR	Base (specification)	^t IS	150	_	_	-	ps	
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC125)	275	_	_	-	ps	
CTRL, CMD, ADDR hold	Base (specification)	tIH	100	_	120	-	ps	29, 30
from CK,CK#	V _{REF} @ 1 V/ns	(DC100)	200	_	220	-	ps	20, 30
Minimum CTRL, CMD, AD	DR pulse width	^t IPW	620	_	560	-	ps	41
ACTIVATE to internal REA	AD or WRITE delay	^t RCD	See corre	sponding ^t R	speed bin CD	table for	ns	31
PRECHARGE command p	eriod	^t RP	See corre	sponding ^t F	-	table for	ns	31
ACTIVATE-to-PRECHARGI	E command period	^t RAS	See corre	sponding ^t R.	-	table for	ns	31, 32
ACTIVATE-to-ACTIVATE c	ommand period	^t RC	See corre	sponding ^t F	-	table for	ns	31
ACTIVATE-to-ACTIVATE minimum command perio	od	^t RRD		MIN = greater of 4CK or 7.5nsMIN = greater of 4CK or 6ns		СК	31	
Four ACTIVATE windows		^t FAW	35	-	35	-		
Write recovery time		tWR	15	N/A	15	N/A	ns	31, 32, 33,34
Delay from start of intern to internal READ comma		tWTR	MIN = gr	eater of 4 N	L CK or 7.5r /A	ns; MAX =	СК	31, 34
READ-to-PRECHARGE tim	ne	^t RTP	MIN = gr	eater of 4 N	CK or 7.5r /A	ns; MAX =	СК	31, 32
CAS#-to-CAS# command	delay	^t CCD	N	1IN = 4CK;	MAX = N	/Α	СК	
Auto precharge write rec time	covery + precharge	^t DAL	MIN = WI	r + ^t rp/tck	((AVG); N	1AX = N/A	СК	
MODE REGISTER SET com	mand cycle time	^t MRD	N	1IN = 4CK;	MAX = N	/Α	СК	
MODE REGISTER SET com	nmand update delay	tMOD	MIN = gre	eater of 12 N	2CK or 15r /A	ns; MAX =	СК	
	IULTIPURPOSE REGISTER READ burst end to node register set for multipurpose register exit		N	1IN = 1CK;	MAX = N	Ά	СК	
	Calibra	ation Timing						
ZQCL command: Long calibration time	POWER-UP and RE- SET operation	^t ZQ _{INIT}	512	_	512	-	CK	
			1					1

			gDDR3	3-2000	gDDR3	8-2200		
Parameter		Symbol	Min	Мах	Min	Max	Unit	Notes
ZQCS command: Short o	alibration time	^t ZQCS	64	_	64	_	СК	
	Initialization	and Reset Ti	ming	<u>I</u>				
Exit reset from CKE HIG	H to a valid command	^t XPR	MIN = gr		CK or ^t RFC = N/A	C + 10ns;	СК	
Begin power supply ran stable	np to power supplies	^t VDDPR	N	11N = N/A;	MAX = 20	0	ms	
RESET# LOW to power s	upplies stable	^t RPS		MIN = 0; N	/IAX = 200		ms	
RESET# LOW to I/O and	R _{TT} High-Z	^t IOZ	Ν	MIN = N/A	MAX = 20)	ns	35
	Refre	esh Timing						
REFRESH-to-ACTIVATE c command period	or REFRESH	^t RFC	MI	N = 260; N	1AX = 70,2	200	ns	
Maximum refresh	T _C ≤ 85°C	-	64 (1X)				ms	36
period	T _C > 85°C	•	32 (2X)				ms	36
Maximum average	T _C ≤ 85°C	^t REFI	7.8 (64ms/8192)				μs	36
periodic refresh	T _C > 85°C		3.9 (32ms/8192)			μs	36	
	Self Re	fresh Timing	ļ.					
Exit self refresh to comr locked DLL	nands not requiring a	^t XS	MIN = greater of 5CK or ^t RFC + 10ns; MAX = N/A			C + 10ns;	СК	
Exit self refresh to comr locked DLL	nands requiring a	^t XSDLL	MIN =	^t DLLK (N	IIN); MAX	= N/A	СК	28
Minimum CKE low pulse entry to self refresh exit		^t CKESR	$MIN = {}^{t}CKE (MIN) + CK; MAX = N/A$			СК		
Valid clocks after self re down entry	fresh entry or power-	^t CKSRE	MIN = greater of 5CK or 10ns; MAX = N/A			s; MAX =	СК	
Valid clocks before self power-down exit, or res	•	^t CKSRX	MIN = gr		CK or 10n /A	s; MAX =	СК	
	Power-I	Down Timing	1					
CKE MIN pulse width		^t CKE (MIN)	Greater o 5.62	of 3CK or 25ns	Greater o 51		СК	
Command pass disable	delay	^t CPDED	MIN MAX	-	MIN MAX		СК	
Power-down entry to p	ower-down exit timing	^t PD	MIN = t	CKE (MIN)	; MAX = 9	× ^t REFI	СК	
Begin power-down peri tered HIGH	od prior to CKE regis-	^t anpd		WL -	1CK		СК	
Power-down entry perionnous or asynchronous	od: ODT either synchro-	PDE			or ^t RFC - F CKE LOW t		СК	
Power-down exit period synchronous or asynchro		PDX	^t ANPD + ^t XPDLL				СК	
	Power-Down En	try Minimum	Timing					

			gDDR	3-2000	gDDR	3-2200		
Parameter		Symbol	Min	Max	Min	Мах	Unit	Notes
ACTIVATE command to	oower-down entry	^t ACTPDEN		MIN = 2		MIN = 1	СК	
PRECHARGE/PRECHARG	E ALL command to	^t PRPDEN		MIN = 2		MIN = 1	СК	
power-down entry								
REFRESH command to p	ower-down entry	^t REFPDEN		MIN = 2		MIN = 1	СК	37
MRS command to powe	r-down entry	^t MRSPDEN		MIN = ^t M	OD (MIN)		СК	
READ/READ with auto p	recharge command to	^t RDPDEN		MIN = R	L + 4 + 1		СК	
power-down entry								
WRITE command to power-down entry	BL8 (OTF, MRS) BC4OTF	tWRPDEN	MIN	= WL + 4 +	- ^t WR/ ^t CK	(AVG)	СК	
	BC4MRS	tWRPDEN	MIN	= WL + 2 +	- ^t WR/ ^t CK	(AVG)	СК	
WRITE with auto pre- charge command to	BL8 (OTF, MRS) BC4OTF	tWRAPDEN	N	MIN = WL + 4 + WR + 1		- 1	СК	
power-down entry	BC4MRS	tWRAPDEN	N	/IN = WL +	- 1	СК		
	Power-Do	wn Exit Timir						
DLL on, any valid common mands not requiring loc		^t XP	MIN = g	reater of S	СК			
recharge power-down with DLL off to com- ands requiring a locked DLL $^{t}XPDLL$ MIN = greater of 10CK or 24ns; MAX N/A					ns; MAX =	СК	28	
	OD	T Timing						
R _{TT} synchronous turn-on	delay	ODTL on		CWL + /	AL - 2CK		СК	38
R _{TT} synchronous turn-of	f delay	ODTL off		CWL + AL - 2CK			СК	40
R _{TT} turn-on from ODTL of	on reference	^t AON	-195	195	-195	195	ps	23, 38
R _{TT} turn-off from ODTL	off reference	^t AOF	0.3	0.7	0.3	0.7	СК	39, 40
Asynchronous R_{TT} turn-c (power-down with DLL c	-	^t AONPD		MIN = 2; I	MAX = 8.5		ns	38
Asynchronous R _{TT} turn-c (power-down with DLL o	-	^t AOFPD		MIN = 2; I	MAX = 8.5	;	ns	40
ODT HIGH time with WF	RITE command and BL8	ODTH8		MIN = 6; N	MAX = N/A	4	СК	
ODT HIGH time without with WRITE command a		ODTH4		MIN = 4; N	MAX = N/A	A	СК	
	Dynami	c ODT Timing	!					
R _{TT,nom} -to-R _{TT(WR)} chang	e skew	ODTLcnw		WL -	2CK		СК	
R _{TT(WR)} -to-R _{TT,nom} chang		ODTLcnw4		4CK + 0	DDTLoff		СК	
R _{TT(WR)} -to-R _{TT,nom} chang		ODTLcnw8		6CK + 0	DDTLoff		СК	
R _{TT} dynamic change ske	N	^t ADC	0.3	0.7	0.3	0.7	СК	39
	Write Le	veling Timing	9					
First DQS, DQS# rising e	dge	tWLMRD	40	-	40	_	СК	
DQS, DQS# delay		tWLDQSEN	25	-	25	_	СК	

			gDDR	3-2000	gDDR	3-2200		
Parameter		Symbol	Min	Мах	Min	Max	Unit	Notes
Write leveling setup fro ing to rising DQS, DQS#	5	tWLS	140	-	140	-	ps	
Write leveling hold from crossing to rising CK, Cl	5	tWLH	140	-	140	-	ps	
Write leveling output d	elay	tWLO	0	7.5	0	7.5	ns	
Write leveling output e	rror	tWLOE	0	2	0	2	ns	
			gDDR	3-1600	gDDR	3-1800		
Parameter		Symbol	Min	Мах	Min	Max	Unit	Notes
	Clos							
Clock period average:	$T_C = 0^{\circ}C$ to $85^{\circ}C$	^t CK (DLL_DIS)	8	7800	8	7800	ns	9, 42
DLL disable mode	T _C = >85°C to 115°C		8	3900	8	3900	ns	42
Clock period average: D	Clock period average: DLL enable mode		See corre		speed bin CK	table for	ns	10, 11
				range a	allowed			
High pulse width avera	ge	^t CH (AVG)	0.47	0.53	0.47	0.53	СК	12
Low pulse width average	je	^t CL (AVG)	0.47	0.53	0.47	0.53	СК	12
Clock period jitter	DLL locked	^t JIT _{PER}	-80	80	-70	70	ps	13
	DLL locking	^t JIT _{PER} , lck	-70	70	-60	60	ps	13
Clock absolute period		^t CK (ABS)			MIN + ^t JIT MAX + ^t JIT		ps	
Clock absolute high pulse width		^t CH (ABS)	0.43	_	0.43	_	^t CK (AVG)	14
Clock absolute low pulse width		^t CL (ABS)	0.43	_	0.43	-	^t CK (AVG)	15
Cycle-to-cycle jitter	DLL locked	^t JIT _{CC}	10	50	140		ps	16
	DLL locking	^t JIT _{CC} ,lck	14	40	1.	20	ps	16

Notes	1_8	apply	to	the	entire	table	
NOLES	1-0	appiy	ω	uie	entire	lable	

notes i o upply to the en			gDDR	B-1600	gDDR	3-1800		
Parameter		Symbol	Min	Мах	Min	Мах	Unit	Notes
Cumulative error across	2 cycles	^t ERR2 _{PER}	-118	118	-103	103	ps	17
	3 cycles	^t ERR3 _{PER}	-140	140	-122	122	ps	17
	4 cycles	^t ERR4 _{PER}	-155	155	-136	136	ps	17
	5 cycles	^t ERR5 _{PER}	-168	168	-147	147	ps	17
	6 cycles	^t ERR6 _{PER}	-177	177	-155	155	ps	17
	7 cycles	^t ERR7 _{PER}	-186	186	-163	163	ps	17
	8 cycles	^t ERR8 _{PER}	-193	193	-169	169	ps	17
	9 cycles	^t ERR9 _{PER}	-200	200	-175	175	ps	17
	10 cycles	^t ERR10 _{PER}	-205	205	-180	180	ps	17
	11 cycles	^t ERR11 _{PER}	-210	210	-184	184	ps	17
	12 cycles	^t ERR12 _{PER}	-215	215	-188	188	ps	17
	n = 13, 1449, 50 cycles	^t ERR <i>n</i> per	^t ERR <i>n</i> _{PER}		+ 0.68in[<i>n</i>]) × ^t JIT _{PER}	ps	17
	cycles		tERR <i>n</i> j	_{PER} MAX =	(1 + 0.68i MAX	n[<i>n</i>]) ×		
	DQ In	put Timing						
Data setup time to DQS,	Base (specification)	^t DS	-	_	-	_	ps	18, 19
DQS#	V _{REF} @ 1 V/ns	(AC175)	-	_	-	_	ps	19, 20
Data setup time to DQS,	Base (specification)	^t DS	30	_	10	-	ps	18, 19
DQS#	V _{REF} @ 1 V/ns	(AC150)	180	-	160	-	ps	19, 20
Data setup time to DQS, DQS#	Base (specification)@ 2 V/ns	^t DS (AC135)	-	-	-	-	ps	19, 20
	V _{REF} @ 2 V/ns		_	_	_	_		19, 20
Data hold time from	Base (specification)	^t DH	65	_	45	_	ps	18, 19
DQS, DQS#	V _{REF} @ 1 V/ns	(DC100)	165	_	145	-	ps	19, 20
Minimum data pulse wid	th	^t DIPW	400	_	360	-	ps	41
	DQ Ou	tput Timing	•					
DQS, DQS# to DQ skew, p	per access	^t DQSQ	-	125	-	100	ps	
DQ output hold time from	m DQS, DQS#	^t QH	0.38	-	0.38	-	^t CK (AVG)	21
DQ Low-Z time from CK,	CK#	^t LZ (DQ)	-500	250	-450	225	ps	22, 23
DQ High-Z time from CK,	CK#	^t HZ (DQ)	-	250	-	225	ps	22, 23
	DQ Strob	e Input Timir	ng					
DQS, DQS# rising to CK, CK# rising		^t DQSS	-0.25	0.25	-0.27	0.27	СК	25
DQS, DQS# differential ir	put low pulse width	^t DQSL	0.45	0.55	0.45	0.55	СК	
DQS, DQS# differential ir	put high pulse width	^t DQSH	0.45	0.55	0.45	0.55	СК	
DQS, DQS# falling setup	to CK, CK# rising	^t DSS	0.2	_	0.18	_	СК	25

			gDDR	3-1600	gDDR	3-1800		
Parameter		Symbol	Min	Max	Min	Max	Unit	Notes
DQS, DQS# falling hold f	rom CK, CK# rising	^t DSH	0.2	-	0.18	-	СК	25
DQS, DQS# differential V	VRITE preamble	tWPRE	0.9	-	0.9	-	СК	
DQS, DQS# differential V	VRITE postamble	tWPST	0.3	-	0.3	-	СК	
	DQ Strobe	e Output Timi	ng					
DQS, DQS# rising to/fron	n rising CK, CK#	^t DQSCK	-255	255	-225	225	ps	23
DQS, DQS# rising to/fron	n rising CK, CK# when	^t DQSCK	1	10	1	10	ns	26
DLL is disabled		(DLL_DIS)						
DQS, DQS# differential o	output high time	^t QSH	0.40	-	0.40	-	СК	21
DQS, DQS# differential o	output low time	^t QSL	0.40	-	0.40	-	СК	21
DQS, DQS# Low-Z time (I	RL - 1)	^t LZ (DQS)	-500	250	-450	225	ps	22, 23
DQS, DQS# High-Z time ((RL + BL/2)	^t HZ (DQS)	-	250	-	225	ps	22, 23
DQS, DQS# differential R	EAD preamble	^t RPRE	0.9	Note 24	0.9	Note 24	СК	23, 24
DQS, DQS# differential R	EAD postamble	^t RPST	0.3	Note 27	0.3	Note 27	СК	23, 27
	Command a	nd Address Ti	ming					
DLL locking time		^t DLLK	512	-	512	-	СК	28
CTRL, CMD, ADDR	Base (specification)	tIS	65	-	45	-	ps	29, 30
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC175)	240	-	220	-	ps	20, 30
CTRL, CMD, ADDR	Base (specification)	tIS	190	-	170	-	ps	29, 30
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC150)	340	-	320	-	ps	20, 30
CTRL, CMD, ADDR	Base (specification)	tIS	-	-	-	-	ps	
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC135)	-	-	-	-	ps	
CTRL, CMD, ADDR	Base (specification)	tIS	-	-	-	-	ps	
setup to CK,CK#	V _{REF} @ 1 V/ns	(AC125)	-	-	_	-	ps	
CTRL, CMD, ADDR hold	Base (specification)	tIH	140	-	120	-	ps	29, 30
from CK,CK#	V _{REF} @ 1 V/ns	(DC100)	240	_	220	_	ps	20, 30
Minimum CTRL, CMD, AI	DDR pulse width	tIPW	620	-	560	-	ps	41
ACTIVATE to internal RE	AD or WRITE delay	^t RCD	See corre	esponding ^t R(-	table for	ns	31
PRECHARGE command p	eriod	^t RP	See corre	esponding ^t R	-	table for	ns	31
ACTIVATE-to-PRECHARG	E command period	^t RAS	See corre	esponding ^t R/	-	table for	ns	31, 32
ACTIVATE-to-ACTIVATE o	command period	^t RC	See corre	esponding ^t R		table for	ns	31
ACTIVATE-to-ACTIVATE		tRRD	MIN = g	reater of	MIN = g	reater of	СК	31
minimum command peri	od		4CK o	or 7.5ns	4CK c	or 7.5ns		
Four ACTIVATE		^t FAW	45	-	40	-	ns	31
windows								

Notes	1_8	annly	to	the	entire	table
NOLES	1-0	appiy	ιυ	uie	entire	lable

			gDDR	3-1600	gDDR	3-1800		
Parameter		Symbol	Min	Мах	Min	Мах	Unit	Notes
Write recovery time		^t WR	15	N/A	15	N/A	ns	31, 32, 33
Delay from start of inter to internal READ comma		^t WTR	MIN = gr	eater of 4 N	is; MAX =	СК	31, 34	
READ-to-PRECHARGE tin	ne	^t RTP	MIN = gr	eater of 4 N	CK or 7.5n /A	ns; MAX =	СК	31, 32
CAS#-to-CAS# command	delay	^t CCD	N	1IN = 4CK;	MAX = N	/Α	СК	
Auto precharge write re time	covery + precharge	^t DAL	MIN = WI	r + ^t rp/tck	((AVG); N	1AX = N/A	СК	
MODE REGISTER SET con	nmand cycle time	^t MRD	N	1IN = 4CK;	MAX = N	/Α	СК	
MODE REGISTER SET con	nmand update delay	tMOD	MIN = gro	eater of 12 N	2CK or 15r /A	ns; MAX =	СК	
MULTIPURPOSE REGISTE mode register set for mu		^t MPRR	N	1IN = 1CK;	MAX = N/	/Α	СК	
	Calibra	ation Timing	•					
ZQCL command: Long calibration time	POWER-UP and RE- SET operation	^t ZQ _{INIT}	512	-	512	-	СК	
	Normal operation	^t ZQ _{OPER}	256	_	256	-	СК	
ZQCS command: Short ca	alibration time	^t ZQCS	64	-	64	-	СК	
	Initialization	and Reset Ti	ming	•				
Exit reset from CKE HIGF	l to a valid command	^t XPR	MIN = g	reater of 5 MAX	SCK or ^t RF = N/A	C + 10ns;	СК	
Begin power supply ram stable	p to power supplies	^t VDDPR	N	/IIN = N/A;	MAX = 20)0	ms	
RESET# LOW to power su	upplies stable	^t RPS		MIN = 0; N	/IAX = 200)	ms	
RESET# LOW to I/O and I	R _{TT} High-Z	^t IOZ	ſ	MIN = N/A	; MAX = 2	0	ns	35
	Refre	esh Timing						
REFRESH-to-ACTIVATE or command period	r REFRESH	^t RFC	MI	N = 260; N	1AX = 70,2	200	ns	
Maximum refresh	T _C ≤ 85°C	_		64 ((1X)		ms	36
period	T _C > 85°C			32	(2X)		ms	36
Maximum average	T _C ≤ 85°C	^t REFI		7.8 (64n	ns/8192)		μs	36
periodic refresh	T _C > 85°C			3.9 (32n	ns/8192)		μs	36
	Self Re	fresh Timing						
Exit self refresh to comm locked DLL	ands not requiring a	^t XS	MIN = g	reater of 5 MAX	SCK or ^t RF = N/A	C + 10ns;	СК	
Exit self refresh to comm locked DLL	ands requiring a	^t XSDLL	MIN =	= ^t DLLK (N	IIN); MAX	= N/A	СК	28

			gDDR:	3-1600	gDDR3	-1800		
Parameter		Symbol	Min	Мах	Min	Мах	Unit	Notes
Minimum CKE low pulse entry to self refresh exit		^t CKESR	MIN = t	CKE (MIN)	+ CK; MA)	K = N/A	СК	
Valid clocks after self re down entry	fresh entry or power-	^t CKSRE	MIN = gr		CK or 10ns /A	; MAX =	СК	
Valid clocks before self ı power-down exit, or res	•	^t CKSRX	MIN = gr		CK or 10ns /A	; MAX =	СК	
	Power-I	Down Timing						
CKE MIN pulse width		^t CKE (MIN)		of 3CK or 25ns	Greater o 5r		СК	
Command pass disable o	delay	^t CPDED			= 1; = N/A		СК	
Power-down entry to po	ower-down exit timing	^t PD	MIN = t	CKE (MIN)	; MAX = 9	× ^t REFI	СК	
Begin power-down peri tered HIGH	od prior to CKE regis-	^t ANPD		WL -	1CK		СК	
Power-down entry perion nous or asynchronous	od: ODT either synchro-	PDE		er of ^t ANPD or ^t RFC - REFRESH ommand to CKE LOW time			СК	
Power-down exit period synchronous or asynchro		PDX	tANPD + tXPDLL				СК	
	Power-Down En	ntry Minimum	n Timing					
ACTIVATE command to	power-down entry	^t ACTPDEN		MIN	l = 1		СК	
PRECHARGE/PRECHARG power-down entry	E ALL command to	^t PRPDEN	MIN = 1			СК		
REFRESH command to p	ower-down entry	^t REFPDEN		MIN	l = 1		СК	37
MRS command to powe	r-down entry	^t MRSPDEN		MIN = ^t M	OD (MIN)		СК	
READ/READ with auto p power-down entry	recharge command to	^t RDPDEN		MIN = R	L + 4 + 1		СК	
WRITE command to power-down entry	BL8 (OTF, MRS) BC4OTF	^t WRPDEN	MIN :	= WL + 4 +	^{- t} WR/ ^t CK (AVG)	СК	
	BC4MRS	tWRPDEN	MIN :	= WL + 2 +	· ^t WR/ ^t CK (AVG)	СК	
WRITE with auto pre- charge command to	BL8 (OTF, MRS) BC4OTF	tWRAPDEN	N	1IN = WL +	- 4 + WR +	1	СК	
power-down entry	BC4MRS	tWRAPDEN	N	1IN = WL +	2 + WR +	1	СК	
	Power-Do	wn Exit Timi	ng					
DLL on, any valid comm mands not requiring loc		^t XP	MIN = g		3CK or 6ns; /A	MAX =	СК	
Precharge power-down mands requiring a locke	with DLL off to com- ^t XPDLL MIN = greater of 10CK or 24ns; MAX		s; MAX =	СК	28			
	OD	T Timing						
R _{TT} synchronous turn-or	delay	ODTL on		CWL + A	AL - 2CK		СК	38

Notes 1–8 apply to the entire table

		gDDR	3-1600	gDDR3	3-1800		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
R _{TT} synchronous turn-off delay	ODTL off		CWL + A	AL - 2CK		СК	40
R _{TT} turn-on from ODTL on reference	^t AON	-250	250	-225	225	ps	23, 38
R _{TT} turn-off from ODTL off reference	^t AOF	0.3	0.7	0.3	0.7	СК	39, 40
Asynchronous R _{TT} turn-on delay (power-down with DLL off)	^t AONPD		MIN = 2; I	MAX = 8.5		ns	38
Asynchronous R _{TT} turn-off delay (power-down with DLL off)	^t AOFPD		MIN = 2; I	MAX = 8.5		ns	40
ODT HIGH time with WRITE command and BL8	ODTH8		MIN = 6; N	/IAX = N/A		СК	
ODT HIGH time without WRITE command or with WRITE command and BC4	ODTH4		MIN = 4; N	/IAX = N/A		СК	
Dynami	c ODT Timing						
R _{TT,nom} -to-R _{TT(WR)} change skew	ODTLcnw		WL -	2CK		СК	
R _{TT(WR)} -to-R _{TT,nom} change skew - BC4	ODTLcnw4		4CK + 0	DDTLoff		CK	
R _{TT(WR)} -to-R _{TT,nom} change skew - BL8	ODTLcnw8		6CK + 0	DDTLoff		CK	
R _{TT} dynamic change skew	^t ADC	0.3	0.7	0.3	0.7	CK	39
Write Le	veling Timing	I					
First DQS, DQS# rising edge	tWLMRD	40	-	40	-	CK	
DQS, DQS# delay	^t WLDQSEN	25	-	25	-	CK	
Write leveling setup from rising CK, CK# cross- ing to rising DQS, DQS# crossing	tWLS	195	-	165	_	ps	
Write leveling hold from rising DQS, DQS# crossing to rising CK, CK# crossing	tWLH	195	-	165	_	ps	
Write leveling output delay	tWLO	0	9	0	7.5	ns	
Write leveling output error	tWLOE	0	2	0	2	ns	

Notes: 1. Parameters are applicable with $0^{\circ}C \le T_C \le 115^{\circ}C$ and $V_{DD}/V_{DDQ} = 1.5V \pm 0.075V$.

2. All voltages are referenced to V_{SS}.

- 3. Output timings are only valid for R_{ON34} output buffer selection.
- 4. The unit ^tCK (AVG) represents the actual ^tCK (AVG) of the input clock under operation. The unit CK represents one clock cycle of the input clock, counting the actual clock edges.
- 5. AC timing and I_{DD} tests may use a V_{IL}-to-V_{IH} swing of up to 900mV in the test environment, but input timing is still referenced to V_{REF} (except ^tIS, ^tIH, ^tDS, and ^tDH use the AC/DC trip points, and CK, CK# and DQS, DQS# use their crossing points). The minimum slew rate for the input signals used to test the device is 1 V/ns for single-ended inputs and 2 V/ns for differential inputs in the range between V_{IL(AC)} and V_{IH(AC)}.
- 6. All timings that use time-based values (ns, μs, ms) should use ^tCK (AVG) to determine the correct number of clocks (this table uses CK or ^tCK [AVG] interchangeably). In the case of noninteger results, all minimum limits are to be rounded up to the nearest whole integer, and all maximum limits are to be rounded down to the nearest whole integer.

4Gb: x16 gDDR3 SDRAM Graphics Addendum Electrical Characteristics and AC Operating Conditions

- 7. Strobe or DQS diff refers to the DQS and DQS# differential crossing point when DQS is the rising edge. Clock or CK refers to the CK and CK# differential crossing point when CK is the rising edge.
- This output load is used for all AC timing (except ODT reference timing) and slew rates. The actual test load may be different. The output signal voltage reference point is V_{DDQ}/2 for single-ended signals and the crossing point for differential signals.
- 9. When operating in DLL disable mode, Micron does not warrant compliance with normal mode timings or functionality.
- 10. The clock's ^tCK (AVG) is the average clock over any 200 consecutive clocks and ^tCK (AVG) MIN is the smallest clock rate allowed, with the exception of a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed values specified and must be of a random Gaussian distribution in nature.
- 11. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of ^tCK (AVG) as a long-term jitter component; however, the spread spectrum may not use a clock rate below ^tCK (AVG) MIN.
- 12. The clock's ^tCH (AVG) and ^tCL (AVG) are the average half clock period over any 200 consecutive clocks and is the smallest clock half period allowed, with the exception of a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed values specified and must be of a random Gaussian distribution in nature.
- 13. The period jitter (^tJIT_{PER}) is the maximum deviation in the clock period from the average or nominal clock. It is allowed in either the positive or negative direction.
- 14. ^tCH (ABS) is the absolute instantaneous clock high pulse width as measured from one rising edge to the following falling edge.
- 15. ^tCL (ABS) is the absolute instantaneous clock low pulse width as measured from one falling edge to the following rising edge.
- 16. The cycle-to-cycle jitter ^tJIT_{CC} is the amount the clock period can deviate from one cycle to the next. It is important to keep cycle-to-cycle jitter at a minimum during the DLL locking time.
- 17. The cumulative jitter error ^tERR*n*PER, where *n* is the number of clocks between 2 and 50, is the amount of clock time allowed to accumulate consecutively away from the average clock over *n* number of clock cycles.
- 18. ^tDS (base) and ^tDH (base) values are for a single-ended 1 V/ns DQ slew rate and 2 V/ns differential DQS, DQS# slew rate.
- 19. These parameters are measured from a data signal (DM, DQ0, DQ1, and so forth) transition edge to its respective data strobe signal (DQS, DQS#) crossing.
- 20. The setup and hold times are listed converting the base specification values (to which derating tables apply) to V_{REF} when the slew rate is 1 V/ns. These values, with a slew rate of 1 V/ns, are for reference only.
- 21. When the device is operated with input clock jitter, this parameter needs to be derated by the actual ^tJIT_{PER} (larger of ^tJIT_{PER} (MIN) or ^tJIT_{PER} (MAX) of the input clock (output deratings are relative to the SDRAM input clock).
- 22. Single-ended signal parameter.
- 23. The DRAM output timing is aligned to the nominal or average clock. Most output parameters must be derated by the actual jitter error when input clock jitter is present, even when within specification. This results in each parameter becoming larger. The following parameters are required to be derated by subtracting ^tERR_{10PER} (MAX): ^tDQSCK (MIN), ^tLZ(DQS) MIN, ^tLZ(DQ) MIN, and ^tAON (MIN). The following parameters are required to be derated by subtracting ^tERR_{10PER} (MAX), ^tLZ (DQS) MAX, ^tLZ (DQ) MAX, and ^tAON (MAX). The parameter ^tRPRE (MIN) is derated by subtracting ^tJIT_{PER} (MAX), while ^tRPRE (MAX) is derated by subtracting ^tJIT_{PER} (MIN).
- 24. The maximum preamble is bound by ^tLZDQS (MAX).
- 25. These parameters are measured from a data strobe signal (DQS, DQS#) crossing to its respective clock signal (CK, CK#) crossing. The specification values are not affected by the

4Gb: x16 gDDR3 SDRAM Graphics Addendum Electrical Characteristics and AC Operating Conditions

amount of clock jitter applied because these are relative to the clock signal crossing. These parameters should be met whether clock jitter is present.

- 26. The ^tDQSCK (DLL_DIS) parameter begins CL + AL 1 cycles after the READ command.
- 27. The maximum postamble is bound by ^tHZDQS (MAX).
- 28. Commands requiring a locked DLL are READ (and RDAP) and synchronous ODT commands. In addition, after any change of latency ^tXPDLL, timing must be met.
- 29. ^tIS (base) and ^tIH (base) values are for a single-ended 1 V/ns control/command/address slew rate and 2 V/ns CK, CK# differential slew rate.
- 30. These parameters are measured from a command/address signal transition edge to its respective clock (CK, CK#) signal crossing. The specification values are not affected by the amount of clock jitter applied as the setup and hold times are relative to the clock signal crossing that latches the command/address. These parameters should be met whether clock jitter is present.
- 31. For these parameters, the DDR3 SDRAM device supports ^t*n*PARAM (*n*CK) = RU(^tPARAM [ns]/^tCK[AVG] [ns]), assuming all input clock jitter specifications are satisfied. For example, the device will support ^t*n*RP (*n*CK) = RU(^tRP/^tCK[AVG]) if all input clock jitter specifications are met. This means that for DDR3-800 6-6-6, of which ^tRP = 15ns, the device will support ^t*n*RP = RU(^tRP/^tCK[AVG]) = 6 as long as the input clock jitter specifications are met. That is, the PRECHARGE command at T0 and the ACTIVATE command at T0 + 6 are valid even if six clocks are less than 15ns due to input clock jitter.
- 32. During READs and WRITEs with auto precharge, the DDR3 SDRAM will hold off the internal PRECHARGE command until ^tRAS (MIN) has been satisfied.
- 33. When operating in DLL disable mode, the greater of 4CK or 15ns is satisfied for ^tWR.
- 34. The start of the write recovery time is defined as follows:
 - For BL8 (fixed by MRS and OTF): Rising clock edge four clock cycles after WL
 - For BC4 (OTF): Rising clock edge four clock cycles after WL
 - For BC4 (fixed by MRS): Rising clock edge two clock cycles after WL
- 35. RESET# should be LOW as soon as power starts to ramp to ensure the outputs are in High-Z. Until RESET# is LOW, the outputs are at risk of driving and could result in excessive current, depending on bus activity.
- 36. The refresh period is 64ms when T_C is less than or equal to 85°C. This equates to an average refresh rate of 7.8125µs. However, nine REFRESH commands should be asserted at least once every 70.3µs. When T_C is greater than 85°C, the refresh period is 32ms.
- 37. Although CKE is allowed to be registered LOW after a REFRESH command when ^tREFPDEN (MIN) is satisfied, there are cases where additional time such as ^tXPDLL (MIN) is required.
- 38. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins to turn on. ODT turn-on time maximum is when the ODT resistance is fully on.
- 39. Half-clock output parameters must be derated by the actual ^tERR_{10PER} and ^tJIT_{DTY} when input clock jitter is present. This results in each parameter becoming larger. The parameters ^tADC (MIN) and ^tAOF (MIN) are each required to be derated by subtracting both ^tERR_{10PER} (MAX) and ^tJIT_{DTY} (MAX). The parameters ^tADC (MAX) and ^tAOF (MAX) are required to be derated by subtracting both ^tERR_{10PER} (MAX) and ^tJIT_{DTY} (MAX).
- 40. ODT turn-off time minimum is when the device starts to turn off ODT resistance. ODT turn-off time maximum is when the DRAM buffer is in High-Z.
- Pulse width of an input signal is defined as the width between the first crossing of V_{REF(DC)} and the consecutive crossing of V_{REF(DC)}.
- 42. Should the clock rate be larger than ^tRFC (MIN), an AUTO REFRESH command should have at least one NOP command between it and another AUTO REFRESH command. Additionally, if the clock rate is slower than 40ns (25 MHz), all REFRESH commands should be followed by an AUTO PRECHARGE command.

Command and Address Setup, Hold, and Derating

The total ^tIS (setup time) and ^tIH (hold time) required is calculated by adding the data sheet ^tIS (base) and ^tIH (base) values to the Δ^{t} IS and Δ^{t} IH derating values, respectively. Example: ^tIS (total setup time) = ^tIS (base) + Δ^{t} IS. For a valid transition, the input signal has to remain above/below V_{IH(AC)}/V_{IL(AC)} for some time ^tVAC.

Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached $V_{IH(AC)}/V_{IL(AC)}$ at the time of the rising clock transition), a valid input signal is still required to complete the transition and to reach $V_{IH(AC)}/V_{IL(AC)}$.

Setup (^IIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IH(AC)min}$. Setup (^IIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IL(AC)max}$. If the actual signal is always earlier than the nominal slew rate line between the shaded $V_{REF(DC)}$ -to-AC region, use the nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between the shaded $V_{REF(DC)}$ -to-AC region, the slew rate of a tangent line to the actual signal from the AC level to the DC level is used for derating value.

Hold (^tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{IL(DC)max}$ and the first crossing of $V_{REF(DC)}$. Hold (^tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{IH(DC)min}$ and the first crossing of $V_{REF(DC)}$. If the actual signal is always later than the nominal slew rate line between the shaded DC-to- $V_{REF(DC)}$ region, use the nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between the shaded DC-to- $V_{REF(DC)}$ region, the slew rate of a tangent line to the actual signal from the DC level to the $V_{REF(DC)}$ level is used for derating value.

Symbol	gDDR3-1600	gDDR3-1800	gDDR3-2000	gDDR3-2200	Unit	Reference
^t IS (base) AC175	65	45	_	-	ps	V _{IH(AC)} /V _{IL(AC)}
^t IS (base) AC150	190	170	_	-	ps	V _{IH(AC)} /V _{IL(AC)}
^t IS (base) AC135	_	-	65	65	ps	V _{IH(AC)} /V _{IL(AC)}
^t IS (base) AC125	_	-	150	150	ps	V _{IH(AC)} /V _{IL(AC)}
^t IH (base) DC100	140	120	100	100	ps	V _{IH(DC)} /V _{IL(DC)}

Table 12: Command and Address Setup and Hold Values Referenced at 1 V/ns – AC/DC-Based

Data Setup, Hold, and Derating

The total ^tDS (setup time) and ^tDH (hold time) required is calculated by adding the data sheet ^tDS (base) and ^tDH (base) values to the Δ^{t} DS and Δ^{t} DH derating values, respectively. Example: ^tDS (total setup time) = ^tDS (base) + Δ^{t} DS. For a valid transition, the input signal has to remain above/below V_{IH(AC)}/V_{IL(AC)} for some time ^tVAC.

Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached $V_{IH(AC)}/V_{IL(AC)}$) at the time of the rising clock transition), a valid input signal is still required to complete the transition and to reach $V_{IH}/V_{IL(AC)}$.

Setup (^tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IH(AC)min}$. Setup (^tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IL(AC)max}$. If the actual signal is always earlier than the nominal slew rate line between the shaded $V_{REF(DC)}$ -to-AC region, use the nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between the shaded $V_{REF(DC)}$ -to-AC region, the slew rate of a tangent line to the actual signal from the AC level to the DC level is used for derating value.

Hold (^tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{IL(DC)max}$ and the first crossing of $V_{REF(DC)}$. Hold (^tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{IH(DC)min}$ and the first crossing of $V_{REF(DC)}$. If the actual signal is always later than the nominal slew rate line between the shaded DC-to- $V_{REF(DC)}$ region, use the nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between the shaded DC-to- $V_{REF(DC)}$ region, the slew rate of a tangent line to the actual signal from the DC-to- $V_{REF(DC)}$ region is used for derating value.

Symbol	gDDR3-1600	gDDR3-1800	gDDR3-2000	gDDR3-2200	Unit	Reference
^t DS (base) AC175	-	-	-	-	ps	V _{IH(AC)} /V _{IL(AC)}
^t DS (base) AC150	30	10	-	-	ps	V _{IH(AC)} /V _{IL(AC)}
^t DS (base) AC135	60	40	68	68	ps	V _{IH(AC)} /V _{IL(AC)}
^t DH (base) DC100	65	45	70	70	ps	V _{IH(DC)} /V _{IL(DC)}

Table 13: Data Setup and Hold Values at 1 V/ns (DQS, DQS# at 2 V/ns) – AC/DC-Based

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000

www.micron.com/products/support Sales inquiries: 800-932-4992

Micron and the Micron logo are trademarks of Micron Technology, Inc.

All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.