
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3221

Keywords: benchmarking the MAXQ instruction-set architecture vs. RISC competitors, microcontroller,
MIPS, RISC, MAXQ

APPLICATION NOTE 3221

Benchmarking the MAXQ® Instruction-Set
Architecture vs. RISC Competitors
Apr 30, 2004

Abstract: This article compares the MAXQ instruction set with competing microcontrollers, including the
PIC16CXXX (mid-range devices), AVR, and MSP430. A table details the strengths and weaknesses of
each instruction set and architecture. We will use selected code algorithms and operations for judging
code density and code performance. A final section introduces and highlights the MIPS (millions of
instructions per second)/mA ratio for each code example.

Overview of MAXQ Instruction Set
The MAXQ instruction set is founded upon the transfer-trigger concept. The instruction word is composed
simply of source and destination operands. While these source and destination operands may represent
physical registers, the encodings may also represent indirect access points to data memory, stack
memory, and the working accumulators, and/or may implicitly trigger hardware operations. Additional
information on the MAXQ transfer-triggered architecture can be found in application note 3222,
"Introduction to the MAXQ Architecture." Source and destination encodings for specific MAXQ devices are
defined in the MAXQ User Guide(s) associated with the device. While some source and destination
encodings may be device specific, such as those designated for peripheral hardware functions, certain
fixed encodings are identified for building the MAXQ base instruction set. Figure 1 gives the MAXQ
instruction word and instruction set mnemonics.

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION
BIT MANIPULATION LOGICAL
MOVE C, #0/#1 Clear/Set Carry AND Logical AND
CPL C Complement Carry OR Logical OR
AND Acc. Logical AND Carry with Accumulator Bit XOR Logical XOR

Page 1 of 12

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/an3222

OR Acc. Logical OR Carry with Accumulator Bit CPL, NEG One's, Two's Complement

XOR Acc. Logical XOR Carry with Accumulator Bit SLA, SLA2,
SLA4 Shift Left Arithmetically 1,2,4

MOVE C, Acc. Move Accumulator Bit to Carry SRA, SRA2,
SRA4

Shift Right Arithmetically
1,2,4

MOVE Acc.,C Move Carry to Accumulator Bit SR Logical Shift Right

MOVE C, src. Move Register Bit to Carry RR, RRC Rotate Right Carry
(Ex/In)clusive

MOVE dst.,
#0/#1 Clear/Set Register Bit RL, RLC Rotate Left Carry

(Ex/In)clusive
MATH DATA TRANSFER

ADD, ADDC Add Carry (Ex/In)clusive XCHN Exchange Accumulator data
nibbles

SUB, SUBB Subtract Carry (Ex/In)clusive XCH
(MAXQ20)

Exchange Accumulator data
bytes

FLOW CONTROL AND BRANCHING MOVE dst,
src Move source to destination

JUMP
{C/NC/Z/NZ/E/NE/S}

Jumps - unconditional or conditional,
relative or absolute PUSH/POP Push/Pop stack

DJNZ LC[n], src Decrement Counter, Jump Not Zero POPI Pop stack and enable
interrupts (INS<0)

CALL Call - relative or absolute Other
RET {C/NC/Z/NZ/S} Return - unconditional or conditional NOP No Operation

RETI {C/NC/Z/NZ/S}Return from Interrupt - unconditional or
conditional CMP Compare with Accumulator

Figure 1. The source-to destination transfer illustrated in the MAXQ instruction word produces a small, yet
very potent instruction set.

Table 1. Instruction Set Comparisons
ISA STRENGTH WEAKNESS

AVR

 • 32 general-purpose working registers
(accumulators)
 • Data pointers are part of the directly
addressable working registers; allow easy
masking and bit-manipulation of high/low
pointer bytes.
 • Read from pointer + displacement (0 to 63-
byte displacement)
 • Stack limited only by internal RAM (except
90S1200 with no RAM, then stack depth = 3)
 • Single-cycle operation
 • Relative jumps ±2k (two-cycle)
 • All AVR have data EEPROM
 • Explicit instructions to set/clear each status
register flag; large group of bit-manipulating
instructions
 • Separate interrup vectors

 • Pipelined instruction fetch
 • Beyond the 32 regs, load (LD)/store (ST)
overhead becomes a factor LD/ST @X,Y,Z
= two cycles, LPM = 3 cycles
 • Reduced support/scope on literal
operations (no ADDC, EORI; only CPI,
ORI, ANDI, SUBI, SBCI, LDI work on R16-
R31)
 • No rotate instructions exclusive of carry
 • Conditional jump range only +63/-64
(two-cycle)
 • CALL/RET/RETI = four cycles

 • Source, destination bit encoded into ALU
operations

 • four-clock core yields poor execution
speed

Page 2 of 12

PIC16CXXX

 • Direct data access (symbolic addressing
mode) can produce dense code and is
conducive to data overlays

 • Pipelined instruction fetch
 • Access to upper data-memory banks
requires paging (RP1:0 bank select)
 • Indirect data access required INDF, FSR
registers
 • Cannot directly load W (accumulator)
 • No ADDC, SUBB
 • Stack depth = 8
 • No relative jumps/branches - only
absolute (CALL, GOTO) or conditional
skips (BTFSx)
 • RETLW for code memory reads =
wasted code space and does not allow
CRC of code space
 • CALL/GOTO/RET/RETFIE/RETW all
require eight clock cycles (two instruction
cycles)
 • Single interrupt vector

MAXQ vs. Other Instruction-Set Architectures
One could attempt to compare the MAXQ instruction mnemonics against those of other architectures, but
this analysis would be difficult and unjustified because each instruction set is architected around specific
device resources and addressing modes. For this reason, the instruction set and the device architecture
(instruction cycle, memory model, register set, addressing modes, etc.) are inseparable and must be
considered together. Table 1 summarizes the strengths and weaknesses of the instruction-set
architectures being compared.

Code Examples
The best way to compare instruction-set architectures is to define some set of tasks and write the code to
perform those tasks. The sections that follow describe certain tasks to be performed and summarize the
code density and performance results for each instruction-set architecture. Example code for the first
routine is included in the document, while the routines that follow will only be summarized with graphs and
text. The code routines corresponding to each set of statistics are available from Maxim upon request.

Table 1. Instruction Set Comparisons (continued)
ISA STRENGTH WEAKNESS

MSP430

 • Extensive source, destination
addressing modes are encoded within
the op code - can yield dense code
 • 16-bit internal path
 • Internal memory accessible as word
or byte
 • Constant generator (CG) for -1, 0, 1,
2, 4, 8
 • Single-cycle operation
 • Stack limited only by internal RAM

 • Von Neumann memory map + elaborate addressing
modes = many cycles. The ONLY single-cycle
instructions are those dealing exclusively with Rn.
Peripheral register access = three to six cycles
 • Literals not supported by CG require extra word
 • Destination operand cannot be register indirect or
register indirect auto-increment
 • No auto-decrement support for register indirect
 • Symbolic addressing limits the ability to reuse code
routines

Page 3 of 12

 • Conditional/relative jump destination
range = ±512 (two-cycle)
 • Separate interrupt vectors, single-
source flags automatically cleared

MAXQ

 • System and peripheral registers are
accessible as source or destination in
the same logical memory space,
yielding the fastest data transfers
 • Single-cycle operation and no
pipelining
 • Single-cycle conditional jump (+127/-
128) or two-cycle absolute jump (0-
65,535)
 • Single-cycle CALL/RET/RETI
 • Auto-decrementing loop-counter
registers eliminate overhead normally
wasted when maintaining a counter
 • Three data pointers with auto-
increment/decrement support. One data
pointer, FP, supports base pointer +
offset addressing (i.e., BP[Offs]).
 • Auto-increment/decrement/modulo
controls for accumulator (working
register) file
 • Selectable word or byte-access
mode for each data pointer
 • Prefixable op code allows a simple
means for instruction set extensions or
enhancements

 • Active accumulator is always the implicit destination
for ALU operations
 • Single-port, synchronous, SRAM data memory
requires that a data pointer be activated (selected)
before being used
 • Default stack depth = 16, however, data pointer
hardware is ideal for implementing a soft stack in data
memory

Memory Copy (MemCpy64)
The memory copy example demonstrates the microcontroller's ability to indirectly manipulate blocks of
data memory. The task is to copy 64 bytes from a data-memory source location to a nonoverlapping data-
memory destination. The code routines for each microcontroller are provided on the following pages,
along with graphs that summarize the cycle count and byte count for the copy operation. These routines
assume that the pointer and byte count have already been defined before the copy operation, and that the
bytes to be copied are word-aligned in memory so the word access modes of the MSP430 and MAXQ20
can be used.

;======================================AVR======================================
; ramsize=r16 ;size of block to be copied
; Z-pointer=r30:r31 ;src pointer
; Y-pointer=r28:r29 ;dst pointer
; USES:
; ramtemp=r1 ;temporary storage register
loop: ; cycles
 ld ramtemp,Z+ ; 2 @src => temp
 st Y+,ramtemp ; 2 temp => @dst
 dec ramsize ; 1
 brne loop ; 2/1
 ret ; 4/5
 ;---------

Page 4 of 12

 ;(7*bytecount) + return - 1(last brne
isn't taken).
; WORD COUNT = 5 ; CYCLE COUNT = 451>

;=====================================MAXQ10====================================
; DP[0] ; src pointer (default WBS0=0)
; DP[1] ; (dst-1) pointer (default WBS1=0)
; LC[0] ; byte count (Loop Counter)
loop: ;words & cycles
 move DP[0], DP[0] ; 1 implicit DP[0] pointer selection
 move @++DP[1],@DP[0]++ ; 1
 djnz LC[0], loop ; 1
 ret ; 1
 ;----------
 ; 4 / (3*bytecount) +1
; WORD COUNT = 4 ; CYCLE COUNT = 193

;====================================MAXQ20=====================================
; Assuming bytes are word aligned (like MSP430 code) for comparison
; DP[0] ; src pointer (default WBS0=1)
; DP[1] ; (dst-1) pointer (default WBS1=1)
; LC[0] ; byte count / 2 (Loop Counter)
loop: ;words/cycles
 move DP[0], DP[0] ; 1 implicit DP[0] pointer selection
 move @++DP[1],@DP[0]++ ; 1
 djnz LC[0], loop ; 1
 ret ; 1
 ;----------
 ; 4 / (3*bytecount/2) +1
; WORD COUNT = 4 ; CYCLE COUNT = 97

;====================================MSP430=====================================
; MSP430 has a 16-bit data bus
; assuming bytes are word aligned, only requires (blocksize/2 transfers).
; R4 ;src pointer
; R5 ;dst pointer
; R6 ;size of block to copy
loop: ;words/cycles
 mov @R4+, 0(R5) ;2 / 5 @src++ => dst
 add #2, R5 ;1 / 1 const generator makes this 1/1
 decd.b R6 ;1 / 1 really sub #2, R6
 jz loop ;1 / 2
 ret ;1 / 3
 ;----------
 ;6 / (9*(bytecount/2)) + return
; WORD COUNT = 6 ; CYCLE COUNT = 291

;===================================PIC16CXXX===================================
; a ; src pointer base
; b ; dst pointer base
; i ; byte count held in reg file
; USES:
; temp ; temp data storage
loop: ; cycles
 decf i, W ; 1 i-- => W
 addlw a ; 1 (a+i--) => W starting at end
 movwf FSR ; 1 W => FSR
 movfw INDF ; 1 W <= @FSR get data
 movwf temp ; 1 W => temp
 movlw (b-a) ; 1 diff in dest-src
 addwf FSR, F ; 1 (b+i--) => W
 movfw temp ; 1 temp => W
 movwf INDF ; 1 W => @FSR store data
 decfsz i, F ; 2/1 i--
 goto loop ; 2
 return ; 2
 ;----------
 ;11 / (12*bytecount) +1 (ret instead of goto,
+1 on decfsz)

Page 5 of 12

; WORD COUNT = 12 ; CYCLE COUNT = 769 (*4clks/inst cycle = 3076)

The MAXQ devices provide the best code density and are the clear winners in execution speed. The
MAXQ10 performs the copy operation slower than the MAXQ20 because it uses the default byte-access
mode for the data pointers. For a MAXQ10 application, if execution speed is deemed more important than
code density and the data memory to be copied is word-aligned (an assumption already being made for
the MSP430 and MAXQ20 example), it could use wordaccess mode for the source and destination data
pointers. Enabling word mode would allow the MAXQ10 copy loop to be cut in half, but would require
additional instructions to enable/disable word-access mode. The overwhelming performance advantage
demonstrated by the MAXQ devices over the competition can be attributed to the following architectural
strengths:

1. No pipelining - branches do not incur the overhead of flushing the instruction prefetch as other devices
do.

2. Auto-decrement loop counter - alleviates the need to do this manually.
3. Harvard memory map - program and data do not share the same physical space, allowing

simultaneous program fetch and data access.
4. Pre-increment/decrement indirect destination pointer - simplifies and speeds advancement of the

destination pointer. This is a weakness of the MSP430, which uses 0(R5) to denote @R5, and then
must advance that destination pointer using another instruction.

The MAXQ advantages illustrated in the memory copy example translate into similar gains for applications
requiring frequent input/output buffering in data memory. In terms of performance, the nearest competitor
is the MSP430. As an example where data memory buffering may be desired, suppose we have an
MSP430 device equipped with an ADC peripheral with a 16-bit output register. Transferring data from the
peripheral output register into data memory and incrementing the pointer in preparation for the next ADC
output sample might be handled with code such as this:

 ; words/cycles
 mov.w &ADAT,0(R14) ; 3 / 6 Store
output word
 incd.w R14 ; 1 / 1 Increment
pointer
 ; 4 / 7

The same transfer operation would look like this on the MAXQ20:

 move @++DP[0], ADCOUT ; 1 / 1

Bubble Sort (BubbleSort)

Page 6 of 12

The bubble sort routine not only demonstrates the ability to access data memory efficiently, but also
performs arithmetic and/or comparison operations between data bytes and conditionally reorders the
bytes. The code routine sorts 32 data-memory bytes so they are left in an ascending or descending order.
The cycle counts assume that byte reordering occurs approximately half of the time as a result of adjacent
byte comparisons. The graphs below summarize the cycle count and byte count for the sort operation on
each microcontroller.

The MAXQ devices, once again, yield the best code density and are the clear winners in execution
speed. The MAXQ advantages can be attributed to the same architectural strengths discussed in the
memory copy example.

Hex-to-ASCII Conversion (Hex2Asc)
This conversion routine tests the scope of the microcontrollers' arithmetic and logical operations. It also
tests their support of literal byte data when translating and expanding data contained within a single byte.
The cycle count represents an average value, given that each nibble can be one of 16 hex values - 0 to 9,
Ato F. The graphs below summarize the cycle count and byte count for the conversion operation on each
microcontroller.

For this test routine, the AVR requires one fewer word since its working registers are directly accessible,
whereas the most efficient method for the MAXQ requires a manual update of the accumulator pointer.
The MSP code density suffers because it lacks operations for manipulating nibbles, and because literals
(#nnnnh) not supported by the constant generator must be encoded in a separate word. The MAXQ
devices and the Atmel AVR achieve similar results in the performance area, while other devices lag
behind. The MSP430 performance suffers from the extra code words to perform the operation.

Arithmetic Shift Right 2 Positions (ShRight)
This routine demonstrates the microcontrollers' ability to support 16-bit word data-memory access and
ALU operations. The desired operation is to arithmetically shift (i.e., preserving the most significant bit) a

Page 7 of 12

16-bit word that resides in data memory. It is assumed that the word resides in the first 256 bytes of data
memory and is aligned in memory to be word addressable by those microcontrollers with the capability.
The following graphs summarize the cycle count and byte count for the shift operation on each
microcontroller.

Both microcontrollers that support 16-bit ALU operations, the MAXQ20 and MSP430, provide significantly
better code density. With exception of the PIC, all of the 8-bit machines require at least twice the number
of code words to accomplish the same arithmetic shift. The MAXQ20 offers the best performance, and the
MAXQ10, while supporting only 8-bit ALU operations, approaches the performance of the 16-bit MSP430.

The MAXQ20 and MSP430 demonstrate higher code density because of their ability to handle 16-bit data
more efficiently than the 8-bit machines. Each does so, however, in a slightly different fashion. The
MAXQ20 transfers the 16-bit word to be shifted into a working register (accumulator) where it can use a
multibit arithmetic shift. The MSP430 performs single-bit arithmetic shift operations using the register
indirect-addressing mode (RRA @R5), and does not explicitly transfer the word from its memory location.
While offering higher performance, the MAXQ20 can provide the same or better code density as the
MSP430, when the arithmetic shifting of a 16-bit word can use one of the multibit arithmetic shift op codes
(SRA2, SRA4, SLA2, SLA4).

Bit-Bang Port Pins (BitBang)
This example tests the ability of an instruction-set architecture to decompose bytes, either by direct bit
manipulation or through shift/rotate, and send the individual bits to a port pin ("bitbanging"). The port-pin
outputs separately represent clock and data, with the requirement that data must be valid on the rising
edge of clock. Since the code is directly manipulating the port pins, this test also demonstrates the ease
with which I/O port registers can be accessed. The graphs below summarize the cycle count and byte
count for the port bit-bang operation on each microcontroller.

The MAXQ devices again are clearly the best performers. The PIC performance is limited here (as in

Page 8 of 12

other examples) because of the underlying 4-cycle core architecture. The MSP430 performance is worse
and can be attributed to both its Von Neumann memory architecture and required use of absolute
addressing to access the port output register.

With respect to code density, the MAXQ and PIC have the same word count. Yet the PIC edges out the
MAXQ among the RISC machines because of its 14-bit program word versus the 16-bit program word of
the MAXQ. The MSP430 code density suffers because it must use at least two words to access its
peripheral registers with the absolute-addressing mode (i.e., & register) or when using literals that cannot
be reduced by the constant generator (e.g., #3h).

The MSP430 method of accessing its peripheral registers deserves further comment. The microcontroller's
primary duty is to interface in some way with the outside world. Thus it must control, monitor, and process
activity that occurs at I/O pins. If the microcontroller embeds very few peripheral-hardware modules, the
burden of this activity is left to the software. For the software to do anything meaningful, it must read and
write the port pins. On the MSP430, these port-pin registers reside in the peripheral register space that
requires use of the absolute-access mode. Now consider a microcontroller that is rich with "smart"
peripherals. There will undoubtedly be more peripheral registers that must be configured, controlled, and
accessed during the course of using the on-chip, dedicated hardware to perform the necessary function.
On the MSP430, these registers reside in the peripheral register space that requires use of the absolute-
access mode. Consequently, there is no escape around the code density and performance penalty
associated with the MSP430 absolute addressing mode.

The "MIPS/mA" Metric
Power consumption is often a significant factor in the selection of a processor or core architecture. The
overall power consumption of a given system depends upon many factors such as supply voltage and
operating frequency, and its ability to use low-power modes whenever possible. Reduced supply
voltage(s) and/or operating frequency, along with frequent use of low-power modes, can greatly reduce
the total system power consumption. While the minimum supply voltage for a given microcontroller
depends greatly upon the device fabrication process technology, the ability to reduce operating frequency
and use low-power mode(s) is largely dependent upon application requirements that can be determined by
the system designer. The MIPS/mA metric provides a simple means for assessing the code efficiency of a
microcontroller while factoring in active current consumption. A common supply voltage should be chosen
to create meaningful MIPS/mA comparisons between different devices. For the forthcoming comparison, a
3V-supply voltage is assumed. To factor in differences and efficiencies in the instruction-set architectures
being compared (i.e., AVR, MSP430, PIC16, MAXQ), it is also necessary to generate separate MIPS/mA
ratios for each code example generated.

Page 9 of 12

Figure 2. This example for IccActive vs. MHz illustrates the effects of increased static and dynamic
current.

To determine the "mA" portion of the MIPS/mA ratio, we examine data sheets of the devices. Most
microcontroller vendors specify typical and maximum active current associated with the maximum
operating frequency of the device. Assuming very small static (DC) current, these data points allow one to
derive typical and maximum mA/MHz approximations used for extrapolating active current at any clock
frequency. The mA/MHz ratio can be better quantified and defined relative to specific system
environmental conditions if the vendor provides active current vs. temperature/frequency characterization
data. Otherwise, we must simply rely on the discrete data points and our assumption of very small static
current. Increased static (DC) current changes the starting point for the mA vs. MHz characteristic curve,
thereby limiting the overall gain seen by the system designer when reducing clock frequency (reducing
dynamic current). Figure 2 gives an example IccActive vs. MHz graph. Table 2 compares mA/MHz
numbers for the various cores and cites the source for the information. The highlighted mA/MHz number
for each architecture is used when this term is required in later calculations.

Figure 3. The MAXQ architecture achieves a high-MIPS performance ratio by executing nearly all
instructions at one clock per instruction.

The "MIPS" portion of the MIPS/mA metric is used to quantify the difference in performance. We will start
by giving a simple equation for MIPS in Figure 3.

The number of clocks per instruction (CPI) is highly important when assessing MIPS for a given
architecture. Architectures such as the Microchip PIC, for example, require multiple clocks per instruction
cycle. Additionally, architectures often require multiple instruction cycles to execute certain instructions or
need cycles to flush the instruction pipeline when performing jumps/branches. When comparing
architectures, the average performance in MIPS is often much less than the peak performance (MIPS)
and varies depending upon instruction mix.

Table 2. Comparison of mA/MHz Numbers for Various Cores

DEVICE TYPICAL
mA/MHz

MAX
mA/MHz SOURCE

PIC16C55X 0.7 1.25 PIC16C55X data sheet: DC Table 10.1, D010 (VCC = 3V,
2MHz); XT or RC

PIC16C62X 0.7 1.25 PIC16C62X data sheet: DC Table 12.1, D010 (VCC = 3V,
2MHz); XT or RC

PIC16LC71 0.35 0.625 PIC16C71X data sheet: DC Table 15.2, D010 (VCC = 3V,
4MHz); XT or RC

PIC16F62X 0.15 0.175 PIC16F62X data sheet: DC Table 17.1, D010 (VCC = 3V,
4MHz)

PIC16LF870/1 0.15 0.5 PIC16F870/1 data sheet: DC Table 14.1, D010 (VCC = 3V,
4MHz); XT or RC

Page 10 of 12

AT90S1200 0.33 0.75 AT90S1200 data sheet: EC Table (3V, 4MHz), Figure 38,
4mA/12MHz (typ)

AT90S2313 0.50 0.75 AT90S2313 data sheet: EC Table (3V, 4MHz), Figure 57,
7.5mA/15MHz (typ)

MSP430F1101 0.30 0.35 MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V,
FMCLK = 1MHz)

MPS430C11X1 0.24 0.30 MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V,
FMCLK = 1MHz)

MSP430Fx12x 0.30 0.35 MSP430x12x data sheet: DC specs (VCC = 3V, FMCLK =
1MHz, FACLK = 32kHz)

MAXQ10 0.30 Simulations
MAXQ20 0.30 Simulations

To produce a more useful indicator and generate a value that helps us reach our MIPS/mA target metric,
we divide MIPS by MHz. The MIPS/MHz ratio can be interpreted as the average number of instructions
that execute in a single clock (for the given code example). Using the MIPS/MHz number and the
mA/MHz number calculated earlier, the MIPS/mA ratio can be generated. The tables below show the
MIPS/MHz and MIPS/mA numbers, respectively, for each of the earlier code-routine comparisons.

Table 3. Comparison of MIPS/MHz and MIPS/mA for Selected Code Algorithms

CORE
MIPS/MHz
MemCpy64 BubbleSort Hex2Asc ShRight BitBang Peak

MAXQ10 1.00 0.99 1.00 1.00 1.00 1
MAXQ20 1.00 0.99 1.00 1.00 1.00 1
PIC 0.23 0.20 0.23 0.25 0.21 0.25
MSP 0.44 0.39 0.64 0.33 0.61 1
AVR 0.57 0.62 0.90 0.71 0.61 1

CORE
MIPS/mA
MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 3.33 3.30 3.33 3.33 3.33
MAXQ20 3.33 3.30 3.33 3.33 3.33
PIC 1.53 1.35 1.53 1.67 1.40
MSP 1.85 1.62 2.66 1.39 1.55
AVR 1.71 1.86 2.69 2.14 1.83

To take the analysis one step further, we must factor in differences between core architecture and
instruction-set efficiency by dividing the MIPS/mA ratio by the number of instructions that are actually
executed for the given code sample. The rationale for this extra calculation is that the execution of three
single-cycle instructions (with the highest MIPS/MHz ratio = 1) is really no better than one 3-cycle
instruction (MIPS/MHz ratio = 0.33). Nonetheless, the resultant MIPS/mA ratio differs drastically. In fact,
most would prefer a single instruction to three if the same task were accomplished. By dividing the
MIPS/mA ratio by the number of instructions executed, we are adjusting the MIPS/mA ratio to the
instruction mix used by a given microcontroller to perform a specific task. The resultant values have been
normalized to the highest performer and are presented in the table below.

Page 11 of 12

Table 4. Comparison of Normalized MIPS/mA Values

CORE
NORMALIZED (MIPS/mA)
MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 0.50 1.00 1.00 0.40 1.00
MAXQ20 1.00 1.00 0.96 1.00 1.00
PIC 0.06 0.29 0.39 0.33 0.38
MSP 0.42 0.45 0.68 0.56 0.48
AVR 0.19 0.48 0.88 0.26 0.48

Conclusion
The normalized "MIPS/mA" metric gives us a relative performance-to-current ratio for comparing
microcontrollers with different architectures, instruction sets, and current-consumption characteristics. A
higher normalized "MIPS/mA" ratio generally can yield one or both of the following benefits: (1) system
clock frequency can be reduced, and (2) the duration of time spent in a low-power or sleep mode can be
increased. Both of these possibilities serve to reduce the system's overall power consumption. Alternately,
higher overall system performance can be realized while remaining within a given current/power budget.
No matter the benefit, the high MIPS/mA ratio produced by the MAXQ architecture is a trustworthy
indication of efficiency.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

Related Parts

MAXQ2000 Low-Power LCD Microcontroller Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3221: http://www.maximintegrated.com/an3221
APPLICATION NOTE 3221, AN3221, AN 3221, APP3221, Appnote3221, Appnote 3221
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 12 of 12

http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3221
http://www.maximintegrated.com/legal

	maxim-ic.com
	Benchmarking the MAXQ® Instruction-Set Architecture vs. RISC Competitors - Application Note - Maxim

